10 research outputs found

    Second intravenous immunoglobulin dose in patients with Guillain-Barre syndrome with poor prognosis (SID-GBS):a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background Treatment with one standard dose (2 g/kg) of intravenous immunoglobulin is insufficient in a proportion of patients with severe Guillain-Barre syndrome. Worldwide, around 25% of patients severely affected with the syndrome are given a second intravenous immunoglobulin dose (SID), although it has not been proven effective. We aimed to investigate whether a SID is effective in patients with Guillain-Barre syndrome with a predicted poor outcome. Methods In this randomised, double-blind, placebo-controlled trial (SID-GBS), we included patients (>= 12 years) with Guillain-Barre syndrome admitted to one of 59 participating hospitals in the Netherlands. Patients were included on the first day of standard intravenous immunoglobulin treatment (2 g/kg over 5 days). Only patients with a poor prognosis (score of >= 6) according to the modified Erasmus Guillain-Barre syndrome Outcome Score were randomly assigned, via block randomisation stratified by centre, to SID (2 g/kg over 5 days) or to placebo, 7-9 days after inclusion. Patients, outcome adjudicators, monitors, and the steering committee were masked to treatment allocation. The primary outcome measure was the Guillain-Barre syndrome disability score 4 weeks after inclusion. All patients in whom allocated trial medication was started were included in the modified intention-to-treat analysis. Findings Between Feb 16, 2010, and June 5, 2018, 327 of 339 patients assessed for eligibility were included. 112 had a poor prognosis. Of those, 93 patients with a poor prognosis were included in the modified intention-to-treat analysis: 49 (53%) received SID and 44 (47%) received placebo. The adjusted common odds ratio for improvement on the Guillain-Barre syndrome disability score at 4 weeks was 1.4 (95% CI 0.6-3.3; p=0.45). Patients given SID had more serious adverse events (35% vs 16% in the first 30 days), including thromboembolic events, than those in the placebo group. Four patients died in the intervention group (13-24 weeks after randomisation). Interpretation Our study does not provide evidence that patients with Guillain-Barre syndrome with a poor prognosis benefit from a second intravenous immunoglobulin course; moreover, it entails a risk of serious adverse events. Therefore, a second intravenous immunoglobulin course should not be considered for treatment of Guillain-Barre syndrome because of a poor prognosis. The results indicate the need for treatment trials with other immune modulators in patients severely affected by Guillain-Barre syndrome. Funding Prinses Beatrix Spierfonds and Sanquin Plasma Products. Copyright (C) 2021 Elsevier Ltd. All rights reserved

    Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis

    Get PDF
    Abstract Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co‐isolated. Furthermore, physical EV‐LPP complexes have been observed in purified EV preparations. Since co‐isolation or association of LPPs can impact EV‐based analysis and biomarker profiling, we investigated the presence and formation of EV‐LPP complexes in biological samples by using label‐free atomic force microscopy, cryo‐electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence‐based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike‐in experiments of purified tumour cell line‐derived EVs in different classes of purified human LPPs. Based on orthogonal single‐particle analysis techniques we demonstrate that EV‐LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence‐based flow cytometric EV analysis staining of LPPs, as well as EV‐LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down‐stream EV analysis and EV biomarker profiling

    Copy number variants in patients with short stature

    Get PDF
    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes

    Second intravenous immunoglobulin dose in patients with Guillain-Barré syndrome with poor prognosis (SID-GBS): a double-blind, randomised, placebo-controlled trial

    No full text
    Background: Treatment with one standard dose (2 g/kg) of intravenous immunoglobulin is insufficient in a proportion of patients with severe Guillain-Barré syndrome. Worldwide, around 25% of patients severely affected with the syndrome are given a second intravenous immunoglobulin dose (SID), although it has not been proven effective. We aimed to investigate whether a SID is effective in patients with Guillain-Barré syndrome with a predicted poor outcome. Methods: In this randomised, double-blind, placebo-controlled trial (SID-GBS), we included patients (≥12 years) with Guillain-Barré syndrome admitted to one of 59 participating hospitals in the Netherlands. Patients were included on the first day of standard intravenous immunoglobulin treatment (2 g/kg over 5 days). Only patients with a poor prognosis (score of ≥6) according to the modified Erasmus Guillain-Barré syndrome Outcome Score were randomly assigned, via block randomisation stratified by centre, to SID (2 g/kg over 5 days) or to placebo, 7–9 days after inclusion. Patients, outcome adjudicators, monitors, and the steering committee were masked to treatment allocation. The primary outcome measure was the Guillain-Barré syndrome disability score 4 weeks after inclusion. All patients in whom allocated trial medication was started were included in the modified intention-to-treat analysis. This study is registered with the Netherlands Trial Register, NTR 2224/NL2107. Findings: Between Feb 16, 2010, and June 5, 2018, 327 of 339 patients assessed for eligibility were included. 112 had a poor prognosis. Of those, 93 patients with a poor prognosis were included in the modified intention-to-treat analysis: 49 (53%) received SID and 44 (47%) received placebo. The adjusted common odds ratio for improvement on the Guillain-Barré syndrome disability score at 4 weeks was 1·4 (95% CI 0·6–3·3; p=0·45). Patients given SID had more serious adverse events (35% vs 16% in the first 30 days), including thromboembolic events, than those in the placebo group. Four patients died in the intervention group (13–24 weeks after randomisation). Interpretation: Our study does not provide evidence that patients with Guillain-Barré syndrome with a poor prognosis benefit from a second intravenous immunoglobulin course; moreover, it entails a risk of serious adverse events. Therefore, a second intravenous immunoglobulin course should not be considered for treatment of Guillain-Barre syndrome because of a poor prognosis. The results indicate the need for treatment trials with other immune modulators in patients severely affected by Guillain-Barré syndrome. Funding: Prinses Beatrix Spierfonds and Sanquin Plasma Products

    Predicting outcome in Guillain-Barré syndrome: international validation of the modified Erasmus GBS Outcome Score

    No full text
    Background and objectives: The clinical course and outcome of the Guillain-Barré syndrome (GBS) are diverse and vary among regions. The modified Erasmus GBS Outcome Score (mEGOS) is a clinical model that predicts the risk of walking inability in GBS patients, and was developed with data from Dutch patients. The study objective was to validate the mEGOS in the International GBS Outcome Study (IGOS) cohort and to improve its performance and region-specificity. Methods: We used prospective data from the first 1500 patients included in IGOS, aged ≥ 6 years and unable to walk independently. We evaluated if the mEGOS at entry and week 1 could predict the inability to walk unaided at 4 and 26 weeks in the full cohort and in regional subgroups, using two measures for model performance: (1) discrimination: area under the receiver operating characteristic curve (AUC), and (2) calibration: observed versus predicted probability of being unable to walk independently. To improve the model predictions we recalibrated the model containing the overall mEGOS score, without changing the individual predictive factors. Finally, we assessed the predictive ability of the individual factors. Results: For validation of mEGOS at entry 809 patients were eligible (Europe/North America n=677, Asia n=76, other=56), and 671 for validation of mEGOS at week 1 (Europe/North America n=563, Asia n=65, other=43). AUC-values were >0.7 in all regional subgroups. In the Europe/North America subgroup observed outcomes were worse than predicted, while in Asia observed outcomes were better than predicted. Recalibration improved model accuracy and enabled the development of a region-specific version for Europe/North America (mEGOS-Eu/NA). Similar to the original mEGOS, severe limb weakness and higher age were the predominant predictors of poor outcome in the IGOS cohort. Discussion: The mEGOS is a validated tool to predict the inability to walk unaided at 4 and 26 weeks in GBS patients, also in countries outside The Netherlands. We developed a region-specific version of mEGOS for patients from Europe/North America. Classification of evidence: This study provides Class II evidence that the mEGOS accurately predicts the inability to walk unaided at 4 and 26 weeks in GBS patients. Clinicaltrialsgov identifier: NCT01582763

    Predicting Outcome in Guillain-Barré Syndrome: International Validation of the Modified Erasmus GBS Outcome Score.

    No full text
    BACKGROUND AND OBJECTIVES: The clinical course and outcome of the Guillain-Barré syndrome (GBS) are diverse and vary among regions. The modified Erasmus GBS Outcome Score (mEGOS), developed with data from Dutch patients, is a clinical model that predicts the risk of walking inability in patients with GBS. The study objective was to validate the mEGOS in the International GBS Outcome Study (IGOS) cohort and to improve its performance and region specificity. METHODS: We used prospective data from the first 1,500 patients included in IGOS, aged ≥6 years and unable to walk independently. We evaluated whether the mEGOS at entry and week 1 could predict the inability to walk unaided at 4 and 26 weeks in the full cohort and in regional subgroups, using 2 measures for model performance: (1) discrimination: area under the receiver operating characteristic curve (AUC) and (2) calibration: observed vs predicted probability of being unable to walk independently. To improve the model predictions, we recalibrated the model containing the overall mEGOS score, without changing the individual predictive factors. Finally, we assessed the predictive ability of the individual factors. RESULTS: For validation of mEGOS at entry, 809 patients were eligible (Europe/North America [n = 677], Asia [n = 76], other [n = 56]), and 671 for validation of mEGOS at week 1 (Europe/North America [n = 563], Asia [n = 65], other [n = 43]). AUC values were \u3e0.7 in all regional subgroups. In the Europe/North America subgroup, observed outcomes were worse than predicted; in Asia, observed outcomes were better than predicted. Recalibration improved model accuracy and enabled the development of a region-specific version for Europe/North America (mEGOS-Eu/NA). Similar to the original mEGOS, severe limb weakness and higher age were the predominant predictors of poor outcome in the IGOS cohort. DISCUSSION: mEGOS is a validated tool to predict the inability to walk unaided at 4 and 26 weeks in patients with GBS, also in countries outside the Netherlands. We developed a region-specific version of mEGOS for patients from Europe/North America. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the mEGOS accurately predicts the inability to walk unaided at 4 and 26 weeks in patients with GBS. TRIAL REGISTRATION INFORMATION: NCT01582763

    Predicting Outcome in Guillain-Barré Syndrome: International Validation of the Modified Erasmus GBS Outcome Score.

    No full text
    BACKGROUND AND OBJECTIVES: The clinical course and outcome of the Guillain-Barré syndrome (GBS) are diverse and vary among regions. The modified Erasmus GBS Outcome Score (mEGOS), developed with data from Dutch patients, is a clinical model that predicts the risk of walking inability in patients with GBS. The study objective was to validate the mEGOS in the International GBS Outcome Study (IGOS) cohort and to improve its performance and region specificity. METHODS: We used prospective data from the first 1,500 patients included in IGOS, aged ≥6 years and unable to walk independently. We evaluated whether the mEGOS at entry and week 1 could predict the inability to walk unaided at 4 and 26 weeks in the full cohort and in regional subgroups, using 2 measures for model performance: (1) discrimination: area under the receiver operating characteristic curve (AUC) and (2) calibration: observed vs predicted probability of being unable to walk independently. To improve the model predictions, we recalibrated the model containing the overall mEGOS score, without changing the individual predictive factors. Finally, we assessed the predictive ability of the individual factors. RESULTS: For validation of mEGOS at entry, 809 patients were eligible (Europe/North America [n = 677], Asia [n = 76], other [n = 56]), and 671 for validation of mEGOS at week 1 (Europe/North America [n = 563], Asia [n = 65], other [n = 43]). AUC values were \u3e0.7 in all regional subgroups. In the Europe/North America subgroup, observed outcomes were worse than predicted; in Asia, observed outcomes were better than predicted. Recalibration improved model accuracy and enabled the development of a region-specific version for Europe/North America (mEGOS-Eu/NA). Similar to the original mEGOS, severe limb weakness and higher age were the predominant predictors of poor outcome in the IGOS cohort. DISCUSSION: mEGOS is a validated tool to predict the inability to walk unaided at 4 and 26 weeks in patients with GBS, also in countries outside the Netherlands. We developed a region-specific version of mEGOS for patients from Europe/North America. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the mEGOS accurately predicts the inability to walk unaided at 4 and 26 weeks in patients with GBS. TRIAL REGISTRATION INFORMATION: NCT01582763
    corecore