523 research outputs found
Angular dependent planar metamagnetism in the hexagonal compounds TbPtIn and TmAgGe
Detailed magnetization measurements, M(T,H,theta), were performed on single
crystals of TbPtIn and TmAgGe (both members of the hexagonal Fe_2P/ZrNiAl
structure type), for the magnetic field H applied perpendicular to the
crystallographic c axis. These data allowed us to identify, for each compound,
the easy-axes for the magnetization, which coincided with high symmetry
directions ([120] for TbPtIn and [110] for TmAgGe). For fixed orientations of
the field along each of the two six-fold symmetry axes, a number of
magnetically ordered phases is being revealed by M(H,T) measurements below T_N.
Moreover, T ~ 2 K, M(H)|_theta measurements for both compounds (with H applied
parallel to the basal plane), as well as T = 20 K data for TbPtIn, reveal five
metamagnetic transitions with simple angular dependencies: H_{ci,j} ~
1/cos(theta +/- phi), where phi = 0^0 or 60^0. The high field magnetization
state varies with theta like 2/3*mu_{sat}(R^{3+})*cos(theta), and corresponds
to a crystal field limited saturated paramagnetic, CL-SPM, state. Analysis of
these data allowed us to model the angular dependence of the locally saturated
magnetizations M_{sat} and critical fields H_c with a three coplanar Ising-like
model, in which the magnetic moments are assumed to be parallel to three
adjacent easy axes. Furthermore, net distributions of moments were inferred
based on the measured data and the proposed model
Investigation of charged colloid beams for electrostatic propulsion Final report
Facility for testing colloid propellants, using glycerol mixture
Further development of a charged liquid colloid source for electrostatic propulsion Final report
Performance characteristics of charged liquid droplet electrostatic propulsion syste
Experimental evaluation of electrostatic generator configurations final report
Evaluation of electrostatic generator design in atmospheric pressur
High Magnetic Field Behaviour of the Triangular Lattice Antiferromagnet, CuFeO_2
The high magnetic field behaviour of the triangular lattice antiferromagnet
CuFeO_2 is studied using single crystal neutron diffraction measurements in a
field of up to 14.5 T and also by magnetisation measurements in a field of up
to 12 T. At low temperature, two well-defined first order magnetic phase
transitions are found in this range of applied magnetic field (H // c): at
H_c1=7.6(3)/7.1(3) T and H_c2=13.2(1)/12.7(1) T when ramping the field up/down.
In a field above H_c2 the magnetic Bragg peaks show unusual history dependence.
In zero field T_N1=14.2(1) K separates a high temperature paramagnetic and an
intermediate incommensurate structure, while T_N2=11.1(3) K divides an
incommensurate phase from the low-temperature 4-sublattice ground state. The
ordering temperature T_N1 is found to be almost field independent, while T_N2
decreases noticeably in applied field. The magnetic phase diagram is discussed
in terms of the interactions between an applied magnetic field and the highly
frustrated magnetic structure of CuFeO_2Comment: 7 pages, 8 figures in ReVTeX. To appear in PR
Recommended from our members
Population History and Gene Divergence in Native Mexicans Inferred from 76 Human Exomes.
Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous genotyping efforts have revealed that Mexico's Indigenous population is highly differentiated and substructured, thus potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76 exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subsequently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8 genes as potential candidates for adaptive evolution in Rarámuris and Triquis, respectively. BCL2L13 is highly expressed in skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rarámuri. The KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations
Phenomenology of the Pentaquark Antidecuplet
We consider the mass splittings and strong decays of members of the
lowest-lying pentaquark multiplet, which we take to be a parity-odd
antidecuplet. We derive useful decompositions of the quark model wave functions
that allow for easy computation of color-flavor-spin matrix elements. We
compute mass splittings within the antidecuplet including spin-color and
spin-isospin interactions between constituents and point out the importance of
hidden strangeness in rendering the nucleon-like states heavier than the S=1
state. Using recent experimental data on a possible S=1 pentaquark state, we
make decay predictions for other members of the antidecuplet.Comment: 12 pages LaTeX, 1 eps figur
Metallic ferromagnetism without exchange splitting
In the band theory of ferromagnetism there is a relative shift in the
position of majority and minority spin bands due to the self-consistent field
due to opposite spin electrons. In the simplest realization, the Stoner model,
the majority and minority spin bands are rigidly shifted with respect to each
other. Here we consider models at the opposite extreme, where there is no
overall shift of the energy bands. Instead, upon spin polarization one of the
bands broadens relative to the other. Ferromagnetism is driven by the resulting
gain in kinetic energy. A signature of this class of mechanisms is that a
transfer of spectral weight in optical absorption from high to low frequencies
occurs upon spin polarization. We show that such models arise from generalized
tight binding models that include off-diagonal matrix elements of the Coulomb
interaction. For certain parameter ranges it is also found that reentrant
ferromagnetism occurs. We examine properties of these models at zero and finite
temperatures, and discuss their possible relevance to real materials
Magnetic-Field Induced First-Order Transition in the Frustrated XY Model on a Stacked Triangular Lattice
The results of extensive Monte Carlo simulations of magnetic-field induced
transitions in the xy model on a stacked triangular lattice with
antiferromagnetic intraplane and ferromagnetic interplane interactions are
discussed. A low-field transition from the paramagnetic to a 3-state (Potts)
phase is found to be very weakly first order with behavior suggesting
tricriticality at zero field. In addition to clarifying some long-standing
ambiguity concerning the nature of this Potts-like transition, the present work
also serves to further our understanding of the critical behavior at ,
about which there has been much controversy.Comment: 10 pages (RevTex 3.0), 4 figures available upon request, CRPS-93-0
- …