65 research outputs found
Low Handgrip Strength Is Not Associated with Type 2 Diabetes Mellitus and Hyperglycemia: a Population-Based Study.
This is the final version. Available from The Korean Society of Clinical Nutrition via the DOI in this record. Type 2 diabetes mellitus (DM) is commonly linked to muscle weakness and metabolic abnormalities which increase healthcare costs. The study was undertaken to investigate if low handgrip strength, as a marker of muscle weakness, is associated with hyperglycemia and/or DM in Brazilian subjects. In a cross-sectional design, 415 individuals of both sexes (46.7% male) were interviewed by a questionnaire and the DM diagnostic was self-reported. Anthropometric measurements, such as weight, height, body mass index (BMI), arm circumference, mid-arm and calf circumference and handgrip strength, were obtained by trained nutritionists. Blood glucose concentrations were determined by portable monitor analysis. Student's t-test was applied to compare DM cases with non-diabetic individuals, and logistic regression analysis was performed to verify the odds for becoming diabetic or having altered glycemia and p < 0.05 was considered as significant. From 415 subjects, 9.2% (n = 35) were classified as DM. DM patients had significantly higher age, BMI, casual glycemia and lower handgrip strength and normalized (to body weight) handgrip strength (NHS) when compared with non-diabetic patients. Individuals with low NHS have 2.7 odds ratio to DM without adjustment for covariate (crude model, p = 0.006) and have 2.7 times higher the likelihood of DM than individuals with high NHS after adjusting for age (model 1, p = 0.006); however, this association disappeared after further adjusting for sex. In conclusion, low handgrip strength normalized or not to body weight, was not associated with hyperglycemia and DM diagnosis.Cape
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Fever as a Cause of Hypophosphatemia in Patients with Malaria
Hypophosphatemia occurs in 40 to 60% of patients with acute malaria, and in many other conditions associated with elevations of body temperature. To determine the prevalence and causes of hypophosphatemia in patients with malaria, we retrospectively studied all adults diagnosed with acute malaria during a 12-year period. To validate our findings, we analyzed a second sample of malaria patients during a subsequent 10-year period. Serum phosphorus correlated inversely with temperature (n = 59, r = −0.62; P<0.0001), such that each 1°C increase in body temperature was associated with a reduction of 0.18 mmol/L (0.56 mg/dL) in the serum phosphorus level (95% confidence interval: −0.12 to −0.24 mmol/L [−0.37 to −0.74 mg/dL] per 1°C). A similar effect was observed among 19 patients who had repeat measurements of serum phosphorus and temperature. In a multiple linear regression analysis, the relation between temperature and serum phosphorus level was independent of blood pH, PCO2, and serum levels of potassium, bicarbonate, calcium, albumin, and glucose. Our study demonstrates a strong inverse linear relation between body temperature and serum phosphorus level that was not explained by other factors known to cause hypophosphatemia. If causal, this association can account for the high prevalence of hypophosphatemia, observed in our patients and in previous studies of patients with malaria. Because hypophosphatemia has been observed in other clinical conditions characterized by fever or hyperthermia, this relation may not be unique to malaria. Elevation of body temperature should be added to the list of causes of hypophosphatemia
Summer warming explains widespread but not uniform greening in the Arctic tundra biome
Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades
Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS
The Gene Ontology resource: enriching a GOld mine
The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations
Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing
Uncertainty in pre-industrial natural aerosol emissions is a major component of the overall uncertainty in the radiative forcing of climate. Improved characterisation of natural emissions and their radiative effects can therefore increase the accuracy of global climate model projections. Here we show that revised assumptions about pre-industrial fire activity result in significantly increased aerosol concentrations in the pre-industrial atmosphere. Revised global model simulations predict a 35% reduction in the calculated global mean cloud albedo forcing over the Industrial Era (1750–2000 CE) compared to estimates using emissions data from the Sixth Coupled Model Intercomparison Project. An estimated upper limit to pre-industrial fire emissions results in a much greater (91%) reduction in forcing. When compared to 26 other uncertain parameters or inputs in our model, pre-industrial fire emissions are by far the single largest source of uncertainty in pre-industrial aerosol concentrations, and hence in our understanding of the magnitude of the historical radiative forcing due to anthropogenic aerosol emissions
- …