26 research outputs found

    Development of a novel multi-capillary, multi-temperature commercial refrigerator cabinet with common low-pressure receiver

    Get PDF
    A multi-temperature 4 drawer catering cabinet was designed to operate using a low-pressure receiver with capillary expansion to the separate evaporator in each drawer. Low-pressure receivers have been shown to be an effective way of allowing evaporators to operate in a fully flooded mode thus enabling more efficient use of the evaporator surface for heat transfer. If a low-pressure receiver is used in a refrigeration circuit the control of refrigerant flow into the evaporator is less critical as the expansion device is not responsible for preventing liquid returning to the compressor. Therefore, a capillary expansion device can be used effectively over a range of operating pressures. The system was shown to be effective at maintaining temperatures in the storage drawers during chilled, frozen and mixed storage temperature tests carried out to the EN441 test standard. The cabinet operated successfully at all conditions except when the heat load in each drawer was excessive (>400 W above base level heat load). In this case, refrigerant was found to back up in the condenser and the low-pressure receiver was empty of liquid refrigerant. A solution to this would be to allow controlled flow of refrigerant from the condenser to the low-pressure receiver at high condensing pressures

    Air cycle combined heating and cooling for the food industry

    Get PDF
    In the food industry there is often a need to both cook and cool food. Heating and cooling processes are rarely directly linked due to heat from refrigeration processes being insufficient to cook food. Therefore cooling and cooking is usually provided by separate pieces of equipment. This paper presents an air cycle system where the hot air was used for heating and the cold air used for fast freezing. The apparatus used a bootstrap unit developed for aircraft air conditioning which was unable to run at the low temperature required for food freezing, so a parallel compressor was added to enable the system to operate at the low temperature required for food freezing. This approach allowed temperatures as low as -140 °C and as high as 234 °C. The system cooked and froze beef burgers, and at the same time heated water up to 98 °C. © 2011 Elsevier Ltd and IIR. All rights reserved

    Assessment of methods to reduce the energy consumption of food cold stores

    Get PDF
    Energy is a major cost in the operation of food cold stores. Work has shown that considerable energy savings can be achieved in cold stores. Results from 38 cold store audits carried out across Europe are presented. Substantial savings could be achieved if operation of cold storage facilities were optimised in terms of heat loads on the rooms and the operation of the refrigeration system. Many improvements identified were low in cost (improved door protection, defrost optimisation, control settings and repairs). In large stores (>100 m3) most improvements identified were cost effective and had short payback times, whereas in small stores there were fewer energy saving options that had realistic payback times. The potential for large energy savings of at minimum 8% and at maximum 72% were identified by optimising usage of stores, repairing current equipment and by retrofitting of energy efficient equipment. Often these improvements had short payback times of less than 1 year. In each facility the options to reduce energy consumption varied. This indicated that to fully identify the maximum energy savings, recommendations need to be specific to a particular plant. General recommendations cannot fully exploit the energy savings available and therefore to maximise energy savings it is essential to monitor and analyse data from each facility. © 2013 Elsevier Ltd. All rights reserved

    Development of a novel multi-capillary, multi-temperature commercial refrigerator cabinet with common low-pressure receiver

    No full text
    A multi-temperature 4 drawer catering cabinet was designed to operate using a low-pressure receiver with capillary expansion to the separate evaporator in each drawer. Low-pressure receivers have been shown to be an effective way of allowing evaporators to operate in a fully flooded mode thus enabling more efficient use of the evaporator surface for heat transfer. If a low-pressure receiver is used in a refrigeration circuit the control of refrigerant flow into the evaporator is less critical as the expansion device is not responsible for preventing liquid returning to the compressor. Therefore, a capillary expansion device can be used effectively over a range of operating pressures. The system was shown to be effective at maintaining temperatures in the storage drawers during chilled, frozen and mixed storage temperature tests carried out to the EN441 test standard. The cabinet operated successfully at all conditions except when the heat load in each drawer was excessive (>400 W above base level heat load). In this case, refrigerant was found to back up in the condenser and the low-pressure receiver was empty of liquid refrigerant. A solution to this would be to allow controlled flow of refrigerant from the condenser to the low-pressure receiver at high condensing pressures
    corecore