3 research outputs found

    Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease.

    No full text
    Background: Lipid peroxidation plays a very important role in sickle cell pathophysiology. The formation of malondialdehyde (MDA) in patients with sickle cell disease (SCD) may lead to endothelial dysfunction. Nitric oxide (NO) is a known vasodilator which plays a role in endothelial function. The current study determined the association between MDA and NO metabolites (NOx), trace elements, and antioxidant enzymes (SOD and CAT) in patients with SCD. The ratio of MDA/NOx was also determined as an index of oxidative stress in the study groups. Methods: This was a cross-sectional study involving 90 patients with SCD and 50 “healthy” controls. Blood samples (n = 140) were collected from the study groups. The plasma, sera, and red cells were kept at −20°C for biochemical analyses. Hemoglobin (Hb) and NOx levels were determined in the plasma using Labsystem Multiskan MS and Griess reagent system, respectively. Super oxide dismutase (SOD) and catalase (CAT) levels were determined in the red cells using assay kits from Cayman chemicals. Lipid peroxidation biomarker MDA was determined in the sera using the TBARS assay. Levels of iron (Fe), copper (Cu), and zinc (Zn) were also determined in the sera using Variant 240FS. MDA and NOx ratio was computed for the study groups and compared. Results: Levels of Hb, NOx, SOD, CAT, and Zn were significantly lower in the patients with SCD (P <.001). MDA, Fe, and MDA/ NOx ratio were, however, significantly higher in the patients with SCD (P <.001). There was no significant correlation between MDA and NOx, SOD, CAT, Fe, and Zn in the study groups. MDA, however, correlated positively and significantly with Cu in the HbSS patients with vaso-occlusive crises (VOC). Gender did not affect the levels of oxidative stress markers. Conclusions: Findings from this study suggest a link between lipid peroxidation and Cu in HbSS patients with VOC. Increased MDA/NOx ratio may contribute to sickle cell pathophysiology by promoting oxidative stress

    Total Serum Magnesium Levels and Calcium-To-Magnesium Ratio in Sickle Cell Disease

    No full text
    Background and Objectives: Imbalance of calcium/magnesium ratio could lead to clinical complications in sickle cell disease (SCD). Low levels of magnesium have been associated with sickling, increased polymerization and vaso-occlusion (VOC) in sickle cell due to cell dehydration. The K-Cl cotransport plays a very important role in sickle cell dehydration and is inhibited by significantly increasing levels of magnesium. The study evaluated total serum magnesium levels and computed calcium/magnesium ratio in SCD patients and &ldquo;healthy&rdquo; controls. Materials and Methods: The study was a case-control cross-sectional one, involving 120 SCD patients (79 Haemoglobin SS (HbSS)and 41 Haemoglobin SC (HbSC)) at the steady state and 48 &ldquo;healthy&rdquo; controls. Sera were prepared from whole blood samples (n = 168) and total magnesium and calcium measured using a Flame Atomic Absorption Spectrometer (Variant 240FS manufactured by VARIAN Australia Pty Ltd., Melbourne, VIC, Australia). Calcium/magnesium ratios were calculated in patients and the controls. Results: The prevalence of hypomagnesemia and hypocalcaemia among the SCD patients was observed to be 39.17% and 52.50% respectively, higher than the controls (4.17% and 22.92%, for hypomagnesemia and hypocalcaemia, respectively). Level of magnesium was significantly lower in the SCD patients compared to their healthy counterparts (p = 0.002). The magnesium level was further reduced in the HbSS patients but not significantly different from the HbSC patients (p = 0.584). calcium/magnesium ratio was significantly higher in the SCD patients (p = 0.031). Although calcium/magnesium ratio was higher in the HbSC patients compared to those with the HbSS genotype, the difference was not significant (p = 0.101). Conclusion: The study shows that magnesium homeostasis are altered in SCD patients, and their levels are lower in HbSS patients. Although calcium/magnesium ratio is significantly higher in SCD patients compared with controls, there is no significant difference between patients with HbSS and HbSC genotypes. Magnesium supplementation may be required in sickle cell patients

    Total Serum Magnesium Levels and Calcium-To-Magnesium Ratio in Sickle Cell Disease

    No full text
    Background and objectives: Imbalance of calcium/magnesium ratio could lead to clinical complications in sickle cell disease (SCD). Low levels of magnesium have been associated with sickling, increased polymerization and vaso-occlusion (VOC) in sickle cell due to cell dehydration. The K-Cl cotransport plays a very important role in sickle cell dehydration and is inhibited by significantly increasing levels of magnesium. The study evaluated total serum magnesium levels and computed calcium/magnesium ratio in SCD patients and "healthy" controls. Materials and methods: The study was a case-control cross-sectional one, involving 120 SCD patients (79 Haemoglobin SS (HbSS)and 41 Haemoglobin SC (HbSC)) at the steady state and 48 "healthy" controls. Sera were prepared from whole blood samples (n = 168) and total magnesium and calcium measured using a Flame Atomic Absorption Spectrometer (Variant 240FS manufactured by VARIAN Australia Pty Ltd., Melbourne, VIC, Australia). Calcium/magnesium ratios were calculated in patients and the controls. Results: The prevalence of hypomagnesemia and hypocalcaemia among the SCD patients was observed to be 39.17% and 52.50% respectively, higher than the controls (4.17% and 22.92%, for hypomagnesemia and hypocalcaemia, respectively). Level of magnesium was significantly lower in the SCD patients compared to their healthy counterparts (p = 0.002). The magnesium level was further reduced in the HbSS patients but not significantly different from the HbSC patients (p = 0.584). calcium/magnesium ratio was significantly higher in the SCD patients (p = 0.031). Although calcium/magnesium ratio was higher in the HbSC patients compared to those with the HbSS genotype, the difference was not significant (p = 0.101). Conclusion: The study shows that magnesium homeostasis are altered in SCD patients, and their levels are lower in HbSS patients. Although calcium/magnesium ratio is significantly higher in SCD patients compared with controls, there is no significant difference between patients with HbSS and HbSC genotypes. Magnesium supplementation may be required in sickle cell patients
    corecore