44 research outputs found

    RURAL DEVELOPMENT PROGRAMS IN THE NEXT FARM BILL

    Get PDF
    Community/Rural/Urban Development,

    Boosting of Synaptic Potentials and Spine Ca Transients by the Peptide Toxin SNX-482 Requires Alpha-1E-Encoded Voltage-Gated Ca Channels

    Get PDF
    The majority of glutamatergic synapses formed onto principal neurons of the mammalian central nervous system are associated with dendritic spines. Spines are tiny protuberances that house the proteins that mediate the response of the postsynaptic cell to the presynaptic release of glutamate. Postsynaptic signals are regulated by an ion channel signaling cascade that is active in individual dendritic spines and involves voltage-gated calcium (Ca) channels, small conductance (SK)-type Ca-activated potassium channels, and NMDA-type glutamate receptors. Pharmacological studies using the toxin SNX-482 indicated that the voltage-gated Ca channels that signal within spines to open SK channels belong to the class CaV2.3, which is encoded by the Alpha-1E pore-forming subunit. In order to specifically test this conclusion, we examined the effects of SNX-482 on synaptic signals in acute hippocampal slices from knock-out mice lacking the Alpha-1E gene. We find that in these mice, application of SNX-482 has no effect on glutamate-uncaging evoked synaptic potentials and Ca influx, indicating that that SNX-482 indeed acts via the Alpha-1E-encoded CaV2.3 channel

    Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory

    Get PDF
    Background Human cancers are extraordinarily heterogeneous in terms of tumor antigen expression, immune infiltration and composition. A common feature, however, is the host ' s inability to mount potent immune responses that prevent tumor growth effectively. Often, naturally primed CD8(+) T cells against solid tumors lack adequate stimulation and efficient tumor tissue penetration due to an immune hostile tumor microenvironment. Methods To address these shortcomings, we cloned tumor-associated antigens (TAA) and the immune-stimulatory ligand 4-1BBL into the genome of modified vaccinia Ankara (MVA) for intratumoral virotherapy. Results Local treatment with MVA-TAA-4-1BBL resulted in control of established tumors. Intratumoral injection of MVA localized mainly to the tumor with minimal leakage to the tumor-draining lymph node. In situ infection by MVA-TAA-4-1BBL triggered profound changes in the tumor microenvironment, including the induction of multiple proinflammatory molecules and immunogenic cell death. These changes led to the reactivation and expansion of antigen-experienced, tumor-specific cytotoxic CD8(+) T cells that were essential for the therapeutic antitumor effect. Strikingly, we report the induction of a systemic antitumor immune response including tumor antigen spread by local MVA-TAA-4-1BBL treatment which controlled tumor growth at distant, untreated lesions and protected against local and systemic tumor rechallenge. In all cases, 4-1BBL adjuvanted MVA was superior to MVA. Conclusion Intratumoral 4-1BBL-armed MVA immunotherapy induced a profound reactivation and expansion of potent tumor-specific CD8(+) T cells as well as favorable proinflammatory changes in the tumor microenvironment, leading to elimination of tumors and protective immunological memory

    Selective Phosphorylation Modulates the PIP2 Sensitivity of the CaM-SK Channel Complex

    Get PDF
    Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins including ion channels through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is an important cofactor for activation of small conductance Ca2+-activated potassium channels (SK) by Ca2+-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SK channels. The PIP2-binding site resides at the interface of CaM and the SK C-terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by Casein Kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G-protein-mediated hydrolysis of PIP2

    Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory

    No full text
    Background Human cancers are extraordinarily heterogeneous in terms of tumor antigen expression, immune infiltration and composition. A common feature, however, is the host ' s inability to mount potent immune responses that prevent tumor growth effectively. Often, naturally primed CD8(+) T cells against solid tumors lack adequate stimulation and efficient tumor tissue penetration due to an immune hostile tumor microenvironment. Methods To address these shortcomings, we cloned tumor-associated antigens (TAA) and the immune-stimulatory ligand 4-1BBL into the genome of modified vaccinia Ankara (MVA) for intratumoral virotherapy. Results Local treatment with MVA-TAA-4-1BBL resulted in control of established tumors. Intratumoral injection of MVA localized mainly to the tumor with minimal leakage to the tumor-draining lymph node. In situ infection by MVA-TAA-4-1BBL triggered profound changes in the tumor microenvironment, including the induction of multiple proinflammatory molecules and immunogenic cell death. These changes led to the reactivation and expansion of antigen-experienced, tumor-specific cytotoxic CD8(+) T cells that were essential for the therapeutic antitumor effect. Strikingly, we report the induction of a systemic antitumor immune response including tumor antigen spread by local MVA-TAA-4-1BBL treatment which controlled tumor growth at distant, untreated lesions and protected against local and systemic tumor rechallenge. In all cases, 4-1BBL adjuvanted MVA was superior to MVA. Conclusion Intratumoral 4-1BBL-armed MVA immunotherapy induced a profound reactivation and expansion of potent tumor-specific CD8(+) T cells as well as favorable proinflammatory changes in the tumor microenvironment, leading to elimination of tumors and protective immunological memory

    Olfactory and haptic crossmodal perception in a visual recognition task

    Get PDF
    Olfactory perception is affected by cross-modal interactions between different senses. However, although the effect of cross-modal interactions for smell have been well investigated, little attention has been paid to the facilitation expressed by haptic interactions with a manipulation of the odorous object’s shape. The aim of this research is to investigate whether there is a cortical modulation in a visual recognition task if the stimulus is processed through an odorous cross-modal pathway or by haptic manipulation, and how these interactions may have an influence on early visual-recognition patterns. Ten healthy non-smoking subjects (25 years ± 5 years) were trained to have a haptic manipulation of 3-D models and olfactory stimulation. Subsequently, a visual recognition task was performed during an electroencephalography recording to investigate the P3 Event Related Potentials components. The subjects had to respond on the keyboard according to their subjective predominant recognition (olfactory or haptic). The effects of haptic and olfactory condition were assessed via linear mixed-effects models (LMMs) of the lme4 package. This model allows for the variance related to random factors to be controlled without any data aggregation. The main results highlighted that P3 increased in the olfactory cross-modal condition, with a significant two-way interaction between odor and left-sided lateralization. Furthermore, our results could be interpreted according to ventral and dorsal pathways as favorite ways to olfactory crossmodal perception

    Olfactory and haptic crossmodal perception in a visual recognition task

    Get PDF
    Olfactory perception is affected by cross-modal interactions between different senses. However, although the effect of cross-modal interactions for smell have been well investigated, little attention has been paid to the facilitation expressed by haptic interactions with a manipulation of the odorous object’s shape. The aim of this research is to investigate whether there is a cortical modulation in a visual recognition task if the stimulus is processed through an odorous cross-modal pathway or by haptic manipulation, and how these interactions may have an influence on early visual-recognition patterns. Ten healthy non-smoking subjects (25 years ± 5 years) were trained to have a haptic manipulation of 3-D models and olfactory stimulation. Subsequently, a visual recognition task was performed during an electroencephalography recording to investigate the P3 Event Related Potentials components. The subjects had to respond on the keyboard according to their subjective predominant recognition (olfactory or haptic). The effects of haptic and olfactory condition were assessed via linear mixed-effects models (LMMs) of the lme4 package. This model allows for the variance related to random factors to be controlled without any data aggregation. The main results highlighted that P3 increased in the olfactory cross-modal condition, with a significant two-way interaction between odor and left-sided lateralization. Furthermore, our results could be interpreted according to ventral and dorsal pathways as favorite ways to olfactory crossmodal perception
    corecore