88 research outputs found

    Comment on: Diffusion through a slab

    Full text link
    Mahan [J. Math. Phys. 36, 6758 (1995)] has calculated the transmission coefficient and angular distribution of particles which enter a thick slab at normal incidence and which diffuse in the slab with linear anisotropic, non-absorbing, scattering. Using orthogonality relations derived by McCormick & Kuscer [J. Math. Phys. 6, 1939 (1965); 7, 2036 (1966)] for the eigenfunctions of the problem, this calculation is generalised to a boundary condition with particle input at arbitrary angles. It is also shown how to use the orthogonality relations to relax in a simple way the restriction to a thick slab.Comment: 3 pages, LaTeX, uses RevTe

    Energy correlation and asymmetry of secondary leptons in H→ttˉH\to t\bar t and H→W+W−H\to W^+W^-

    Full text link
    We study the energy correlation of charged leptons produced in the decay of a heavy Higgs particle H→ttˉ→bl+νlbˉl−νˉlH\to t\bar t\to bl^+\nu_l\bar bl^-\bar{\nu}_l and H→W+W−→l+νll−νˉl.H\to W^+W^-\to l^+\nu_ll^-\bar{\nu}_l. The possible influence of CPCP--violation in the HttˉHt\bar t and HW+W−HW^+W^- vertices on the energy spectrum of the secondary leptons is analyzed. The energy distribution of the charged leptons in the decay H→W+W−→l+νll−νˉlH\to W^+W^-\to l^+\nu_ll^-\bar{\nu}_l is sensitive to the CPCP--parity of the Higgs particle and yields a simple criterion for distinguishing scalar Higgs from pseudoscalar Higgs.Comment: 12 pages, + 4 uuencoded figures. report PITHA 94/2

    Numerical Studies of Cosmic Ray Injection and Acceleration

    Get PDF
    A numerical scheme that incorporates a thermal leakage injection model into a combined gas dynamics and cosmic ray (CR, hereafter) diffusion-convection code has been developed. The particle injection is followed numerically by filtering the diffusive flux of suprathermal particles across the shock to the upstream region according to a velocity-dependent transparency function that controls the fraction of leaking particles. We have studied CR injection and acceleration efficiencies during the evolution of CR modified planar shocks for a wide range of initial shock Mach numbers, M0M_0, assuming a Bohm-like diffusion coefficient. The injection process is very efficient when the subshock is strong, leading to fast and significant modification of the shock structure. As the CR pressure increases, the subshock weakens and the injection rate decreases accordingly, so that the subshock does not disappear. Although some fraction of the particles injected early in the evolution continue to be accelerated to ever higher energies, the postshock CR pressure reaches an approximate time-asymptotic value due to a balance between fresh injection/acceleration and advection/diffusion of the CR particles away from the shock. We conclude that the injection rates in strong parallel shocks are sufficient to lead to rapid nonlinear modifications to the shock structures and that self-consistent injection and time-dependent simulations are crucial to understanding the non-linear evolution of CR modified shocks.Comment: 28 pages, To appear in ApJ November 1, 2002 issu

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104−107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4−133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies ∼50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (Ms∼afewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005
    • …
    corecore