6 research outputs found

    Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer

    Full text link
    The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth's surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012-August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1-3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement

    Modelling new particle formation events in the South African savannah

    Full text link
    Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction of these systems with the atmosphere is not well understood. Atmospheric particles, called aerosols, affect the climate on regional and global scales, and are an important factor in air quality. In this study, measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There already are some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first detailed simulation that includes all the main processes relevant to particle formation. The results show that both of the particle formation mechanisms investigated overestimated the dependency of the formation rates on sulphuric acid. From the two particle formation mechanisms tested in this work, the approach that included low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events than the approach that did not. To obtain a reliable estimate of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa. This work is the first step in developing a more comprehensive new particle formation model applicable to the unique environment in southern Africa. Such a model will assist in better understanding and predicting new particle formation – knowledge which could ultimately be used to mitigate impacts of climate change and air quality

    Understanding the History of Two Complex Ice Crystal Habits Deduced From a Holographic Imager

    Full text link
    The sizes and shapes of ice crystals influence the radiative properties of clouds, as well as precipitation initiation and aerosol scavenging. However, ice crystal growth mechanisms remain only partially characterized. We present the growth processes of two complex ice crystal habits observed in Arctic mixed-phase clouds during the Ny-Ã…lesund AeroSol Cloud ExperimeNT campaign. First, are capped-columns with multiple columns growing out of the plates' corners that we define as columns on capped-columns. These ice crystals originated from cycling through the columnar and plate temperature growth regimes, during their vertical transport by in-cloud circulation. Second, is aged rime on the surface of ice crystals having grown into faceted columns or plates depending on the environmental conditions. Despite their complexity, the shapes of these ice crystals allow to infer their growth history and provide information about the in-cloud conditions. Additionally, these ice crystals exhibit complex shapes and could enhance aggregation and secondary ice production.ISSN:0094-8276ISSN:1944-800

    The Ny-Ã…lesund Aerosol Cloud Experiment (NASCENT) Overview and First Results

    Full text link
    The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds, which modulate the solar and terrestrial radiative fluxes and, thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Ã…lesund Aerosol Cloud Experiment (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Ã…lesund, Svalbard. The campaign's primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In situ and remote sensing observations were taken on the ground at sea level, at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical and molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting Model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications.ISSN:0003-0007ISSN:1520-047

    The Ny-Ã…lesund Aerosol Cloud Experiment (NASCENT): Overview and First Results

    Full text link
    Abstract The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds which modulate the solar and terrestrial radiative fluxes, and thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Ålesund AeroSol Cloud ExperimeNT (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Ålesund Svalbard. The campaign’s primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In-situ and remote sensing observations were taken on the ground at sea-level and at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical properties which also include molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications
    corecore