14 research outputs found

    Pico meter metrology for the GAIA mission

    No full text
    To measure the relative motions of GAIA's telescopes, the angle between the telescopes is monitored by an all Silicon Carbide Basic Angle Monitoring subsystem (BAM OMA). TNO is developing this metrology system. The stability requirements for this metrology system go into the pico meter and pico radian range. Such accuracies require extreme measures and extreme stability. Specific topics addressed are mountings of opto-mechanical components, gravity deformation, materials and tests that were necessary to prove that the requirements are feasible. Especially mounting glass components on Silicon Carbide and mastering the Silicon Carbide material proved to be a challenge. © 2009 SPIE

    Delft Testbed Interferometer: a homothetic mapping test setup

    No full text
    The Delft Testbed Interferometer (DTI) will be presented. The basics of homothetic mapping will be explained together with the method of fulfilling the requirements as chosen in the DTI setup. The optical layout incorporates a novel tracking concept enabling the use of homothetic mapping in real telescope systems for observations on the sky. The requirements for homothetic mapping and the choices made in the DTI setup will be discussed. Finally the planned experiments will be discussed

    Delft testbed interferometer: layout design and research goals

    No full text
    The Delft Testbed Interferometer (DTI) will be presented. The main purpose for the DTI is to demonstrate the feasibility of homothetic mapping, both fixed and under scanning conditions. The driving design issues behind the DTI will be presented together with a list of experiments to be conducted with the DTI system in the field of wide field imaging

    Test results of the infrared single-mode fiber for the DARWIN mission

    No full text
    Nulling interferometry is the baseline technique for the DARWIN planet finding mission of the European Space Agency. Using this technique it will be possible to cancel, by destructive interference, the light from the bright star and look directly at its surrounding planets and eventually discover life on them. To achieve this goal wavefront errors need to be reduced to a very high degree in order to achieve the required nulling quality. Such a high wavefront quality can only be achieved with adequate wavefront filtering measures. Single mode fibers in general have excellent mode filtering capabilities, but they were not recently available for the broad infrared wavelength region of Darwin (4-20 um). Within an ESA technology development project, TNO has designed and tested an infrared single mode fiber based on chalcogenide glasses that has been manufactured by the University of Rennes. Several tests are carried out to characterize the materials used and the IR single mode fiber. Far field intensity distribution measurement at 10.6 um reveals the single mode operation of the manufactured fiber. Influence of coating, length, light coupling and bending of the fiber are also investigated

    Development of broadband infrared single-mode fibers for the DARWIN mission

    No full text
    A vital function of the space interferometer foreseen in the DARWIN mission is the so-called "nulling" operation. The challenge of nulling is making the null in the interferometric signal sufficiently deep to cancel the light from the bright star during the collection of light from its surrounding planets. The performance of the nulling is limited by the wavefront quality of the beams. The wavefront error can be reduced by filtering. One promising concept for nulling wavefront filtering is using a single mode fiber. For the wavefront filtering in the DARWIN mission, the fiber has to cover the operational wavelength range of 4-20 μm. Furthermore, a minimal insertion loss is required to ensure a minimum exposure time. This results in the separation of the complete wavelength range into several separate wavelength bands in the nulling system. Within an ESA project, a chalcogenide glass fiber based on the Te-As-Se (TAS) composition is selected to be used for the short wavelength band. TNO has designed and tested several TAS fibers that have been manufactured by the University of Rennes. Single mode operation is demonstrated. Furthermore, the effect of bending the fiber and light coupling are investigated. For the long wavelength band up to 20 μm, Tellurium based glass is proposed. Different samples of various composition based on Te glass are manufactured. Accurate temperature control to avoid crystallization is found to be essential for the manufacturing process. For the bulk material, a transmission window up to 20 μm is measured

    The development of a breadboard Cryogenic Optical Delay Line for DARWIN

    No full text
    TNO has developed a compact BreadBoard (BB) cryogenic Optical Delay Line (ODL) for use in future space interferometry missions such as ESA's Darwin and NASA's TPF-I. The breadboard delay line is representative of a flight mechanism. The optical design is a two-mirror cat's-eye. A linear guiding system based on magnetic bearings provides frictionless and wear free operation with zero hysteresis. The delay line has a voice coil actuator for single stage Optical Path Difference (OPD) control. The verification program, including functional testing at 40K, has been completed succesfully

    Infrared single mode chalcogenide glass fiber for space

    No full text
    An important measuring technique under study for the DARWIN planet finding mission, is nulling interferometry, enabling the detection of the weak infrared emission lines of an orbiting planet. This technique requires a perfect wavefront of the light beams to be combined in the interferometer. By using a single mode waveguide before detection, wavefront errors are filtered and a virtually perfect plane wavefront is obtained. In this paper the results on the development and the optical characterisation of suitable infrared transmitting chalcogenide glasses and mid-IR guiding optical fibers are reported. Two different preform techniques for manufacturing core-cladding chalcogenide fibers are described. Two types of step index fibers, prepared with Te 2As3Se5 chalcogenide glasses, offer single mode guidance at 10.6 μm. © 2007 Optical Society of America

    Development of infrared single-mode fibers for 2 wavelength bands of the Darwin mission: test results of prototypes

    No full text
    Various space telescope array systems are being considered to investigate other terrestrial planets orbiting around nearby stars in order to find extra-terrestrial life. One of them is the DARWIN mission of the European Space Agency (ESA). The required technology is the nulling interferometer. The challenge of nulling is making the null in the interferometric signal sufficiently deep to cancel the light from the bright star during the collection of light from its surrounding planets. The performance of the nulling is limited by the wavefront quality of the beams. The wavefront error can be reduced by filtering using a single mode fiber. For the DARWIN mission, the operational wavelength range is 6.5-20μm. Within the current ESA project, this is covered by a dual-band fiber system. A chalcogenide glass fiber based on the Te-As-Se (TAS) composition is selected to be used for the short wavelength band. For the long wavelength band up to 20 μm, Tellurium based glass is proposed. Different samples of various composition based on Te glass are manufactured and tested. The fibers are designed by TNO and different prototypes have been manufactured by the University of Rennes. Test setups are developed to demonstrate/investigate the single mode operation. Cladding modes are found to disturb the single mode operation. The effect of cladding modes is modeled. Solutions to eliminate the cladding modes are investigated and tested. © 2009 SPIE

    The manufacturing, assembly and acceptance testing of the breadboard Cryogenic Optical Delay Line for DARWIN

    No full text
    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is representative of a future flight mechanism, with all used materials and processes being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings are used for guiding. They provide frictionless and wear free operation with zero-hysteresis. The manufacturing, assembly and acceptance testing have been completed and are reported in this paper. The verification program, including functional testing at 40 K, will start in the final quarter of 2005
    corecore