1,652 research outputs found

    Shocks and a Giant Planet in the Disk Orbiting BP Piscium?

    Full text link
    Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica ('cristobalite'). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.Comment: 25 pages, 4 figures, 1 table. Accepted to Ap

    Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Cen and AC Her

    Get PDF
    Context: We study the structure and evolution of circumstellar discs around evolved binaries and their impact on the evolution of the central system. Aims: To study in detail the binary nature of RUCen and ACHer, as well as the structure and mineralogy of the circumstellar environment. Methods: We combine multi-wavelength observations with a 2D radiative transfer study. Our radial velocity program studies the central stars, while our Spitzer spectra and broad-band SEDs are used to constrain mineralogy, grain sizes and physical structure of the circumstellar environment. Results: We determine the orbital elements of RUCen showing that the orbit is highly eccentric with a rather long period of 1500 days. The infrared spectra of both objects are very similar and the spectral dust features are dominated by Mg-rich crystalline silicates. The small peak-to-continuum ratios are interpreted as being due to large grains. Our model contains two components with a cold midplain dominated by large grains, and the near- and mid-IR which is dominated by the emission of smaller silicates. The infrared excess is well modelled assuming a hydrostatic passive irradiated disc. The profile-fitting of the dust resonances shows that the grains must be very irregular. Conclusions: These two prototypical RVTauri pulsators with circumstellar dust are binaries where the dust is trapped in a stable disc. The mineralogy and grain sizes show that the dust is highly processed, both in crystallinity and grain size. The cool crystals show that either radial mixing is very efficient and/or that the thermal history at grain formation has been very different from that in outflows. The physical processes governing the structure of these discs are similar to those observed in protoplanetary discs around young stellar objects.Comment: 11 pages, 12 figures, accepted for publication by A&

    Solidification of liquid metal drops during impact

    Get PDF
    Hot liquid metal drops impacting onto a cold substrate solidify during their subsequent spreading. Here we experimentally study the influence of solidification on the outcome of an impact event. Liquid tin drops are impacted onto sapphire substrates of varying temperature. The impact is visualised both from the side and from below, which provides a unique view on the solidification process. During spreading an intriguing pattern of radial ligaments rapidly solidifies from the centre of the drop. This pattern determines the late-time morphology of the splat. A quantitative analysis of the drop spreading and ligament formation is supported by scaling arguments. Finally, a phase diagram for drop bouncing, deposition and splashing as a function of substrate temperature and impact velocity is provided

    IRAS\,11472-0800: an extremely depleted pulsating binary post-AGB star

    Full text link
    We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We deploy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV\,Tauri stars to the non-pulsating class of strongly depleted objects.Comment: 12 pages, 14 figures Accepted for publication in A&A Main Journa

    An interferometric study of the post-AGB binary 89 Herculis. II Radiative transfer models of the circumbinary disk

    Get PDF
    The presence of disks and outflows is widespread among post-AGB binaries. In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB system. The data showed this flux to arise from close to the central binary. Scattering off the inner rim of the circumbinary disk, or in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the disk we aim to discriminate between these two configurations. By including Herschel/SPIRE photometry, we extend the SED such that it now fully covers UV to sub-mm wavelengths. The MCMax radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of Paper I, to constrain the structure of the disk and in particular of its inner rim. The near-IR visibility data require a smooth inner rim, here obtained with a two-power-law parameterization of the radial surface density distribution. A model can be found that fits all the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths though, the reason being the opposing constraints imposed by the optical and near-IR interferometric data. A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all the IR but not the optical observations of 89 Her. Another dusty, outflow or halo, component therefore needs to be added to the system.Comment: 15 pages, in pres

    IRAS 19135+3937: An SRd variable as interacting binary surrounded by a circumbinary disc

    Full text link
    Semi-regular (SR) variables are not a homogeneous class and their variability is often explained due to pulsations and/or binarity. This study focuses on IRAS 19135+3937, an SRd variable with an infra-red excess indicative of a dusty disc. A time-series of high-resolution spectra, UBV photometry as well as a very accurate light curve obtained by the Kepler satellite, allowed us to study the object in unprecedented detail. We discovered it to be a binary with a period of 127 days. The primary has a low surface gravity and an atmosphere depleted in refractory elements. This combination of properties unambiguously places IRAS 19135+3937 in the subclass of post-Asymptotic Giant Branch stars with dusty discs. We show that the light variations in this object can not be due to pulsations, but are likely caused by the obscuration of the primary by the circumbinary disc during orbital motion. Furthermore, we argue that the double-peaked Fe emission lines provide evidence for the existence of a gaseous circumbinary Keplerian disc inside the dusty disc. A secondary set of absorption lines has been detected near light minimum, which we attribute to the reflected spectrum of the primary on the disc wall, which segregates due to the different Doppler shift. This corroborates the recent finding that reflection in the optical by this type of discs is very efficient. The system also shows a variable Halpha profile indicating a collimated outflow originating around the companion. IRAS 19135+3937 thus encompasses all the major emergent trends about evolved disc systems, that will eventually help to place these objects in the evolutionary context.Comment: Accepted to MNRA

    The Formation of Crystalline Dust in AGB Winds from Binary Induced Spiral Shocks

    Full text link
    As stars evolve along the Asymptotic Giant Branch, strong winds are driven from the outer envelope. These winds form a shell, which may ultimately become a planetary nebula. Many planetary nebulae are highly asymmetric, hinting at the presence of a binary companion. Some post-Asymptotic Giant Branch objects are surrounded by torii of crystalline dust, but there is no generally accepted mechanism for annealing the amorphous grains in the wind to crystals. In this Letter, we show that the shaping of the wind by a binary companion is likely to lead to the formation of crystalline dust in the orbital plane of the binary.Comment: Submitted to ApJ

    Time resolved spectroscopy of BD+46 442: gas streams and jet creation in a newly discovered evolved binary with a disk

    Full text link
    Previous studies have shown that many post-AGB stars with dusty disks are associated with single-lined binary stars. To verify the binarity hypothesis on a larger sample, we started a high-resolution spectral monitoring of about 40 field giants, whose binarity was suspected based on either a light curve, an infrared excess, or a peculiar chemical composition. Here we report on the discovery of the periodic RV variations in BD+46 442, a high-latitude F giant with a disk. We interpret the variations due to the motion around a faint companion, and deduce the following orbital parameters: Porb = 140.77 d, e = 0.083, asini=0.31 AU. We find it to be a moderately metal-poor star ([M/H]=-0.7) without a strong depletion pattern in the photospheric abundances. Interestingly, many lines show periodic changes with the orbital phase: Halpha switches between a double-peak emission and a PCyg-like profiles, while strong metal lines appear split during the maximum redshift. Similar effects are likely visible in the spectra of other post-AGB binaries, but their regularity is not always realized due to sporadic observations. We propose that these features result from an ongoing mass transfer from the evolved giant to the companion. In particular, the blue-shifted absorption in Halpha, which occurs only at superior conjunction, may result from a jet originating in the accretion disk around the companion and seen in absorption towards the luminous primary.Comment: 16 pages, accepted in A&

    Disparities in use of mental health and substance abuse services by Asian and Native Hawaiian/Other Pacific Islander women

    Get PDF
    The purpose of this study was to determine if disparities exist in lifetime utilization of mental health/substance abuse services among Asian, Native Hawaiian/Other Pacific Islander (NHOPI) and white mothers. The study sample was comprised of mothers assessed to be at-risk (n = 491) and not at-risk (n = 218) for child maltreatment in the Hawaii Healthy Start Program study. Multiple logistic regression models were used to test the effects of predisposing, need, and enabling factors on utilization of services. Results revealed that, among mothers with depressive symptoms, compared with whites, Asians and NHOPI were significantly less likely to have received services. There were no significant racial differences in use of mental health/substance use services by other factors. These results suggest that racial disparities exist in utilization of mental health/substance abuse services among mothers with depressive symptoms. Future research is needed to identify barriers and facilitators to accessing needed services for Asian and NHOPI women
    • …
    corecore