3 research outputs found

    Treatment of aqueous solutions of 1,4-dioxane by ozonation and catalytic ozonation with copper oxide (CuO)

    Get PDF
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. In this study, treatment for the removal of 1,4-dioxane by ozone and by catalytic ozonation using CuO as the catalyst was investigated. While the removal of 1,4-dioxane was small (20%) and mineralization negligible after 6 h of ozonation treatment, the removals of 1,4-dioxane and total organic carbon increased by factors of 10.35 and 81.25, respectively, after catalytic ozonation in the presence of CuO. The mineralization during catalytic ozonation was favoured at pH 10 (94.91 min−1), although it proceeded even at pH 3 (54.41 min−1). The CuO catalyst decreased the equilibrium concentration of soluble ozone and favoured its decomposition to reactive oxidative species. Radical scavenging experiments demonstrated that superoxide radicals were the main species responsible for the degradation of 1,4-dioxane. Further scavenging experiments with phosphate confirmed the presence of Lewis active sites on the surface of CuO, which were responsible for the adsorption and decomposition of ozone. The reaction mechanism proceeded through the formation of ethylene glycol diformate, which quickly hydrolyzed to ethylene glycol and formic acid as intermediate products. The stability of CuO indicated weak copper leaching and high catalytic activity for five recycling cycles. The toxicity of the water, assessed by Vibrio fischeri bioluminescence assays, remained the same (low toxicity) after catalytic ozonation while it increased after treatment with ozonation alone

    Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters

    No full text
    The impact of cerium (Ce) and neodymium (Nd) rare-earth metal doping of TiO2 prepared by the hydrothermal method was investigated to tailor effective photocatalytic degradation of coloured wastewater under UV or visible illumination. The hydrothermal treatment of TiO2 decreased the pHpzc from 6.3 to 3.1–3.8 favouring the affinity for cationic water contaminants. Doping with Ce and Nd modified the crystallinity and the morphology of the photocatalysts and significantly increased the BET surface area and the adsorption capacity of cationic dyes. The photocatalytic activity under UV light irradiation decreased due to shielding of the catalyst active area by excessive amount of dye adsorbed. Conversely, the photocatalytic activity of the Ce and Nd doped TiO2 increased under visible light irradiation by 1.2 times as a result of the dye photosensitization effect. It was demonstrated that two-steps dark adsorption and photocatalytic reaction or one-step simultaneous adsorption and reaction can produce significantly different results for the photocatalytic degradation of dyes in coloured waters, the rate being controlled by the competitive adsorption of the reacting organics and the H2O/OH− species. The reaction is driven by the radical oxygen species (ROS) formed on the catalyst surface the nature of which, differs under UV or visible light irradiation. The Ce-doped TiO2 and Nd-doped TiO2 photocatalysts with 0.5% rare-earth content were found to be efficient in the degradation of MB in aqueous solution, removing the colour and reducing the toxicity of wastewaters

    Structural, optical and photocatalytic properties of erbium (Er3+) and yttrium (Y3+) doped TiO2 thin films with remarkable self-cleaning super-hydrophilic properties

    No full text
    The self-cleaning and super hydrophilic properties of pristine TiO2 and of TiO2 doped with Er3+ or Y3+ transparent thin films deposited onto glass substrates were investigated. The thin films prepared by multiple dipping and drying cycles of the glass substrate into the pristine TiO2 sol and Er3+ or Y3+-doped TiO2 sol were characterized by X-ray diffraction, UV-vis spectrophotometry, and atomic force microscopy (AFM). The self-cleaning photocatalytic activity of the thin films towards the removal of oleic acid deposited on the surface under UVA irradiation was evaluated. A remarkable enhancement was observed in the hydrophilic nature of the TiO2 thin films under irradiation. The optical properties and wettability of TiO2 were not affected by Er3+ or Y3+ doping. However, the photocatalytic degradation of leic acid under UVA irradiation improved up to 1.83 or 1.95 fold as the Er3+ or Y3+ content increased, respectively, due to the enhanced separation of the photogenerated carriers and reduced crystallite size. AFM analysis showed that the surface roughness increased by increasing the Er3+ or Y3+ content due to the formation of large aggregates. This in turn contributes to the increase of the active surface area enhancing the photodegradation process. This study demonstrates that TiO2 doped with low amounts of Er3+ or Y3+ down to 0.5 mol% can produce transparent, super-hydrophilic, thin film surfaces with remarkable self-cleaning properties
    corecore