26,362 research outputs found
Supernovae Types Ia/II and Intracluster Medium Enrichment
We re-examine the respective roles played by supernovae (SNe) Types Ia and II
in enriching the intracluster medium (ICM) of galaxy clusters, in light of the
recent downward shift of the ASCA abundance ratios of alpha-elements to iron
favoured by Ishimaru & Arimoto (1997, PASJ, 49, 1). Because of this shift,
Ishimaru & Arimoto conclude that >50% of the ICM iron must have originated from
within Type Ia SNe progenitors. A point not appreciated in their study, nor in
most previous analyses, is the crucial dependence of such a conclusion upon the
adopted massive star physics. Employing several alternative Type II SN yield
compilations, we demonstrate how uncertainties in the treatment of convection
and mass-loss can radically alter our perception of the relative importance of
Type Ia and II SNe as ICM polluters. If mass-loss of the form favoured by
Maeder (1992, A&A, 264, 105) or convection of the form favoured by Arnett
(1996, Supernovae and Nucleosynthesis) is assumed, the effect upon the oxygen
yields would lead us to conclude that Type Ia SNe play no part in polluting the
ICM, in contradiction with Ishimaru & Arimoto. Apparent dichotomies still exist
(e.g. the mean ICM neon-to-iron ratio implies a 100% Type II Fe origin, while
the mean sulphur ratio indicates a 100% Type Ia origin) that cannot be
reconciled with the currently available yield tables.Comment: 6 pages (incl 1 PostScript figure), LaTeX, also available at
http://msowww.anu.edu.au/~gibson/publications.html, MNRAS, in pres
On Dwarf Galaxies as the Source of Intracluster Gas
Recent observational evidence for steep dwarf galaxy luminosity functions in
several rich clusters has led to speculation that their precursors may be the
source of the majority of gas and metals inferred from intracluster medium
(ICM) x-ray observations. Their deposition into the ICM is presumed to occur
through early supernovae-driven winds, the resultant systems reflecting the
photometric and chemical properties of the low luminosity dwarf spheroidals and
ellipticals we observe locally. We consider this scenario, utilising a
self-consistent model for spheroidal photo-chemical evolution and gas ejection
via galactic superwinds. Insisting that post-wind dwarfs obey the observed
colour-luminosity-metallicity relations, we conclude that the bulk of the ICM
gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at
http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol
473, 1997, in pres
The [?/Fe] ratios of very metal-poor stars within the integrated galactic initial mass function theory
The aim of this paper is to quantify the amplitude of the predicted plateau in [α/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function (IMF) in galaxies is steeper if the star formation rate (SFR) is low – as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [α/Fe] plateaus in dwarf galaxies, characterized by small SFRs. The [α/Fe] plateau is up to 0.7 dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [α/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [α/Fe] plateau similar to those of the Milky Way, and almost independent of the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations
Constraints on Early Nucleosynthesis from the Abundance Pattern of a Damped Ly-alpha System at z = 2.626
We have investigated chemical evolution in the young universe by analysing
the detailed chemical enrichment pattern of a metal-rich galaxy at high
redshift. The recent detection of over 20 elements in the gas-phase of a damped
Lyman-alpha absorber (DLA) at z = 2.626 represents an exciting new avenue for
exploring early nucleosynthesis. Given a strict upper age of ~2.5 Gyr and a
gas-phase metallicity about one third solar, we have shown the DLA abundance
pattern to be consistent with the predictions of a chemical evolution model in
which the interstellar enrichment is dominated by massive stars with a small
contribution from Type Ia supernovae. Discrepancies between the empirical data
and the models are used to highlight outstanding issues in nucleosynthesis
theory, including a tendency for Type II supernovae models to overestimate the
magnitude of the "odd-even" effect at subsolar metallicities. Our results
suggest a possible need for supplemental sources of magnesium and zinc, beyond
that provided by massive stars.Comment: 12 pages, 7 figs. Accepted for publication in ApJ (The Astrophysical
Journal
Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations
We present a hydrodynamical and chemical model for the globular cluster Omega
Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal
galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10
Gyr ago. We highlight the very different roles played by Type II and Type Ia
supernovae (SNe) in the chemical enrichment of the inner regions of the
putative parent dSph. While the SNe II pollute the interstellar medium rather
uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as
long as succesive SNe II explosions spread them out. Stars forming in such
pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing
to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars
in the central region differs substantially from that of the main population of
the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous
mixing is also responsible for a radial segregation of iron-rich stars with
depleted [alpha/Fe] ratios, as observed in some dSphs. Assuming a star
formation history of ~1.5 Gyr, our model succeeds in reproducing both the iron
and calcium distributions observed in Omega Cen and the main features observed
in the empirical alpha/Fe versus Fe/H plane. Finally, our model reproduces the
overall spread of the color-magnitude diagram, but fails in reproducing the
morphology of the SGB-a and the double morphology of the main sequence.
However, the inhomogeneous pollution reduces (but does not eliminate) the need
for a significantly enhanced helium abundance to explain the anomalous position
of the blue main sequence. Further models taking into account the dynamical
interaction of the parent dwarf galaxy with the Milky Way and the effect of AGB
pollution will be required.Comment: 15 pages, 13 figures. MNRAS accepte
Cosmological implications of dwarf spheroidal chemical evolution
The chemical properties of dwarf spheroidals in the local group are shown to
be inconsistent with star formation being truncated after the reionization
epoch (z~8). Enhanced levels of [Ba/Y] in stars in dwarf spheroidals like
Sculptor indicate strong s-process production from low-mass stars whose
lifetimes are comparable with the duration of the pre-reionization epoch. The
chemical evolution of Sculptor is followed using a model with SNeII and SNeIa
feedback and mass- and metallicity-dependent nucleosynthetic yields for
elements from H to Pb. We are unable to reproduce the Ba/Y ratio unless stars
formed over an interval long enough for the low-mass stars to pollute the
interstellar medium with s-elements. This robust result challenges the
suggestion that most of the local group dwarf spheroidals are fossils of
reionization and supports the case for large initial dark matter halos.Comment: 7 pages, 4 figures. Accepted for publication in ApJ. Minor changes
following referee repor
The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations
The hot Jupiter HD189733b is the most extensively observed exoplanet. Its
atmosphere has been detected and characterised in transmission and eclipse
spectroscopy, and its phase curve measured at several wavelengths. This paper
brings together results of our campaign to obtain the complete transmission
spectrum of the atmosphere of this planet from UV to IR with HST, using STIS,
ACS and WFC3. We provide a new tabulation of the transmission spectrum across
the entire visible and IR range. The radius ratio in each wavelength band was
rederived to ensure a consistent treatment of the bulk transit parameters and
stellar limb-darkening. Special care was taken to correct for, and derive
realistic estimates of the uncertainties due to, both occulted and unocculted
star spots. The combined spectrum is very different from the predictions of
cloud-free models: it is dominated by Rayleigh scattering over the whole
visible and near infrared range, the only detected features being narrow Na and
K lines. We interpret this as the signature of a haze of condensate grains
extending over at least 5 scale heights. We show that a dust-dominated
atmosphere could also explain several puzzling features of the emission
spectrum and phase curves, including the large amplitude of the phase curve at
3.6um, the small hot-spot longitude shift and the hot mid-infrared emission
spectrum. We discuss possible compositions and derive some first-order
estimates for the properties of the putative condensate haze/clouds. We finish
by speculating that the dichotomy between the two observationally defined
classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the
prototypes, might not be whether they possess a temperature inversion, but
whether they are clear or dusty. We also consider the possibility of a
continuum of cloud properties between hot Jupiters, young Jupiters and L-type
brown dwarfs.Comment: Accepted for publication in MNRAS. 31 pages, 19 figures, 8 table
- …