37,771 research outputs found

    Astrometric observations of comets and minor planets

    Get PDF
    Comets and planet crossing asteroids are observed so that accurate positions can be determined. The observations are made with the Palomar 1.5 m telescope equipped with a CCD array. The combination of telescope and detector is quite effective at recording faint comets and minor planets. This proves useful for early acquisition of comets and asteroids returning for a new opposition. The resulting positions permit accurate orbits to be determined and allow the properties of the comets and asteroids to be measured by other observers using a variety of techniques. Recoveries and other notable observations of comets and planet crossing asteroids observed during the past years are discussed

    Asteroid families, dynamics and astrometry

    Get PDF
    The proper elements and family assignments for the 1227 Palomar-Leiden Survey asteroids of high quality were tabulated. In addition to the large table, there are also auxiliary tables of Mars crossers and commensurate objects, histograms of the proper element distributions, and a discussion. Probably the most important part of the discussion describes the Mars crossing boundary, how the closest distances of approach to Mars and Jupiter are calculated, and why the observed population of Mars crossers should bombard that planet episodically rather than uniformly. Analytical work was done to derive velocity distributions of family forming events from proper element distributions subject to assumptions which may be appropriate for cratering events. Software was developed for a microcomputer to permit plotting of the proper elements. Three orthogonal views are generated and stereo pairs can be printed when desired. This program was created for the study of asteroid families. The astrometry task is directed toward measuring and reducing positions on faint comets and the minor planets with less common orbits. The observational material is CCD frames taken with the Palomar 1.5 m telescope. Positions of 10 comets and 16 different asteroids were published on the Minor Planet Circulars

    Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    Get PDF
    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed

    Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    Get PDF
    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included

    Approximation in LQG control of a thermoelastic rod

    Get PDF
    Control and estimator gains are computed for linear-quadratic-Gaussian (LQG) optimal control of the axial vibrations of a thermoelastic rod. The computations are based on a modal approximation of the partial differential equations representing the rod, and convergence of the approximations to control and estimator gains is the main issue

    Computational methods for optimal linear-quadratic compensators for infinite dimensional discrete-time systems

    Get PDF
    An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method

    Peer-to-peer:is deviant behavior the norm on P2P file-sharing networks?

    Get PDF
    P2P file-sharing networks such as Kazaa, eDonkey, and Limewire boast millions of users. Because of scalability concerns and legal issues, such networks are moving away from the semicentralized approach that Napster typifies toward more scalable and anonymous decentralized P2P architectures. Because they lack any central authority, these networks provide a new, interesting context for the expression of human social behavior. However, the activities of P2P community members are sometimes at odds with what real-world authorities consider acceptable. One example is the use of P2P networks to distribute illegal pornography. To gauge the form and extent of P2P-based sharing of illegal pornography, we analyzed pornography-related resource-discovery traffic in the Gnutella P2P network. We found that a small yet significant proportion of Gnutella activity relates to illegal pornography: for example, 1.6 percent of searches and 2.4 percent of responses are for this type of material. But does this imply that such activity is widespread in the file-sharing population? On the contrary, our results show that a small yet particularly active subcommunity of users searches for and distributes illegal pornography, but it isn't a behavioral norm

    Effect of neck cut position on time to collapse in halal slaughtered cattle without stunning

    Get PDF
    This study examined the effect of neck cut position on the time to physical collapse in upright restrained halal slaughtered cattle (n = 644). Time to collapse was used as an indirect indicator of the early stages of onset of unconsciousness. Cattle were slaughtered with either a conventional low (LNC) (n = 561) or a high neck cut (HNC) (n = 83). Mean time to final collapse was higher in the LNC compared to HNC group (18.9 ± 1.1 s and 13.5 ± 1.3 s respectively (P 20 s to final collapse had larger false aneurysms. In summary, the HNC reduced the mean time to final collapse and the frequency of animals that took longer than 20 s to collapse

    Turbulence and turbulent mixing in natural fluids

    Full text link
    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until strong-force viscous stresses freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic microwave background temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered as plasma photon-viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales. Turbulent morphologies and viscous-turbulent lengths appear as linear gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the dark matter of galaxies. Shortly after the plasma to gas transition, planet-mergers produce stars that explode on overfeeding to fertilize and distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International Center for Theoretical Physics conference, Trieste, Italy. Revision according to Referee comments. Accepted for Physica Scripta Topical Issue to be published in 201

    A real-time digital computer program for the simulation of a single rotor helicopter

    Get PDF
    A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case
    • 

    corecore