33,167 research outputs found
Turbulence and turbulent mixing in natural fluids
Turbulence and turbulent mixing in natural fluids begins with big bang
turbulence powered by spinning combustible combinations of Planck particles and
Planck antiparticles. Particle prograde accretions on a spinning pair releases
42% of the particle rest mass energy to produce more fuel for turbulent
combustion. Negative viscous stresses and negative turbulence stresses work
against gravity, extracting mass-energy and space-time from the vacuum.
Turbulence mixes cooling temperatures until strong-force viscous stresses
freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic
microwave background temperature anisotropies show big bang turbulence fossils
along with fossils of weak plasma turbulence triggered as plasma photon-viscous
forces permit gravitational fragmentation on supercluster to galaxy mass
scales. Turbulent morphologies and viscous-turbulent lengths appear as linear
gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies
fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the
dark matter of galaxies. Shortly after the plasma to gas transition,
planet-mergers produce stars that explode on overfeeding to fertilize and
distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International
Center for Theoretical Physics conference, Trieste, Italy. Revision according
to Referee comments. Accepted for Physica Scripta Topical Issue to be
published in 201
Pressure containment tests in support of the nuclear Brayton cycle heat exchanger and duct assembly /HXDA/, phase 2
Plate-fin heat exchangers for nuclear reactor Brayton cycl
Volatiles in interplanetary dust particles and aerogels
Volatiles measured in 25 interplanetary dust particles (IDPs) are a mixture of both indigenous materials and contaminants associated with the collection and processing of the ODPs prior to analysis. Most IDPs have been collected in the stratosphere using a silicone oil/freon mixture (20:1 ratio) coated on collector plates. Studies have shown that silicone oil, freon and hexane residues remain with the ODPs, despite attempts to clean the IDPs. Analysis of the IDPs with the LMMS-technique produces spectra with a mixture of indigeneous and contaminants components. The contamination signal can be identified and removed; however, the contamination signal may obscure some of the indigeneous component's signal. Employing spectra stripping techniques, the indigenous volatile constituents associated with the IDPs can be identified. Volatiles are similar to those measured in CI or CM carbonaceous chondrites. Collection of IDPs in low-Earth orbit utilizing a Cosmic Dust Collection Facility attached to Space Station Freedom has been proposed. The low-density material aerogel has been proposed as a collection substrate for IDPs. Our studies have concentrated on identifying volatile contaminants that are associated with aerogel. We have found that solvents used for the preparation of aerogel remain in aerogel and methods must be developed for removing the entrapped solvents before aerogels can be used for an IDP collection substrate
Gravitational hydrodynamics of large scale structure formation
The gravitational hydrodynamics of the primordial plasma with neutrino hot
dark matter is considered as a challenge to the bottom-up cold dark matter
paradigm. Viscosity and turbulence induce a top-down fragmentation scenario
before and at decoupling. The first step is the creation of voids in the
plasma, which expand to 37 Mpc on the average now. The remaining matter clumps
turn into galaxy clusters. Turbulence produced at expanding void boundaries
causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex
lines. At decoupling galaxies and proto-globular star clusters arise; the
latter constitute the galactic dark matter halos and consist themselves of
earth-mass H-He planets. Frozen planets are observed in microlensing and
white-dwarf-heated ones in planetary nebulae. The approach also explains the
Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature
fluctuations of micro-Kelvins.Comment: 6 pages, no figure
Brayton heat exchanger unit development program (alternate design)
A Brayton Heat Exchanger Unit Alternate Design (BHXU-Alternate) consisting of a recuperator, a heat sink heat exchanger, and a gas ducting system, was designed and fabricated. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. Emphasis was on double containment against external leakage and leakage of the organic coolant into the gas stream. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement, including the close-coupled integration of the BHXU-Alternate with the Brayton Rotating Unit (BRU)
Transportation noise pollution - Control and abatement
Control and abatement of transportation noise pollutio
- …