1,922 research outputs found
Portable dynamic fundus instrument
A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data
Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories
Allelic segregation and independent assortment in <i>T. brucei</i> crosses: proof that the genetic system is Mendelian and involves meiosis
The genetic system on Trypanosoma brucei has been analysed by generating large numbers of independent progeny clones from two crosses, one between two cloned isolates of Trypanosoma brucei brucei and one between cloned isolates of T. b. brucei and Trypanosoma brucei gambiense, Type 2. Micro and minisatellite markers (located on each of the 11 megabase housekeeping chromosomes) were identified, that are heterozygous in one or more of the parental strains and the segregation of alleles at each locus was then determined in each of the progeny clones. The results unequivocally show that alleles segregate in the predicted ratios and that alleles at loci on different chromosomes segregate independently. These data provide statistically robust proof that the genetic system is Mendelian and that meiosis occurs. Segregation distortion is observed with the minisatellite locus located on chromosome I of T. b. gambiense Type 2 and neighboring markers, but analysis of markers further along this chromosome did not show distortion leading to the conclusion that this is due to selection acting on one part of this chromosome. The results obtained are discussed in relation to previously proposed models of mating and support the occurrence of meiosis to form haploid gametes that then fuse to form the diploid progeny in a single round of mating
Organizational Efficacy of Small and Medium-Sized Suppliers: The Role of Information Quality and Continuous Quality Improvement
The role of information quality and continuous quality improvement was analyzed in regards to the organizational efficacy of small and medium-sized suppliers. It was anticipated that both variables would have positive relationships with organizational efficacy. Results supported these hypotheses and demonstrate the importance of firms controlling the flow of quality information and emphasizing continuous quality improvement in order to strengthen organizational efficacy. Given the significant impact of efficacy on individual and group performance and the relationships confirmed as part of the current study, future research is called for such that we might better understand the qualities that characterize the successful supply chain relationships for SMEs
Genetic exchange in <i>Trypanosoma brucei</i>: evidence for mating prior to metacyclic stage development
It is well established that genetic exchange occurs between Trypanosoma brucei parasites when two stocks are used to infect tsetse flies under laboratory conditions and a number of such crosses have been undertaken. Both cross and self-fertilisation can take place and, with the products of mating being the equivalent of F1 progeny in a Mendelian system and. Recently, analysis of a large collection of independent progeny using a series of polymorphic micro and minisatellite markers, has formally demonstrated that the allelic segregation at loci on each of the 11-megabase chromosomes conforms to ratios predicted for a classical diploid genetic system involving meiosis as well as independent assortment of markers on different chromosomes. Further extensive analysis of these F1 progeny, using a large panel of micro and minisatellite markers, has led to the construction of a genetic map of one parasite stock A. MacLeod, A. Tweedie and S. McLellan et al., The genetic map of Trypanosoma brucei, Nucleic Acids Res 33 (2005), pp. 6688–6693. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (10)
Prevalence and Properties of Dark Matter in Elliptical Galaxies
Given the recently deduced relationship between X-ray temperatures and
stellar velocity dispersions (the "T-sigma relation") in an optically complete
sample of elliptical galaxies (Davis & White 1996), we demonstrate that L>L_*
ellipticals contain substantial amounts of dark matter in general. We present
constraints on the dark matter scale length and on the dark-to-luminous mass
ratio within the optical half-light radius and within the entire galaxy. For
example, we find that minimum values of dark matter core radii scale as r_dm >
4(L_V/3L_*)^{3/4}h^{-1}_80 kpc and that the minimum dark matter mass fraction
is >~20% within one optical effective radius r_e and is >~39-85% within 6r_e,
depending on the stellar density profile and observed value of beta_spec. We
also confirm the prediction of Davis & White (1996) that the dark matter is
characterized by velocity dispersions that are greater than those of the
luminous stars: sigma_dm^2 ~ 1.4-2 sigma_*^2. The T-sigma relation implies a
nearly constant mass-to-light ratio within six half-light radii: M/L_V ~ 25h_80
M_sun/L_V_sun. This conflicts with the simplest extension of CDM theories of
large scale structure formation to galactic scales; we consider a couple of
modifications which can better account for the observed T-sigma relation.Comment: 27 pages AASTeX; 15 PostScript figures; to appear in Ap
The Metallicity of Pre-Galactic Globular Clusters: Observational consequences of the first stars
We explore a scenario where metal-poor globular clusters (GCs) are enriched
by the first supernovae in the Universe. If the first stars in a 10^7 Msun dark
halo were very massive (>180 Msun), then a pair instability supernova from a
single massive star can produce sufficient iron to enrich 10^6 Msun of
pristine, primordial gas to [Fe/H] ~ -2. In such a scenario, where a single
massive star acts as a seed for halo GCs, the accurate abundance analysis of GC
stars would allow a direct measurement of the Population III initial mass.
Using the latest theoretical yields for zero metallicity stars in the mass
range 140-260 Msun, we find that the metals expelled from a ~230 Msun star are
consistent with [Si/Fe] and [Ca/Fe] observed in GC stars. However, no single
star in this mass range can simultaneously explain all halo GC heavy-element
abundance ratios, such as [V/Fe], [Ti/Fe] and [Ni/Fe]. These require a
combination masses for the Population III stellar progenitors. The various
observational consequences of this scenario are discussed.Comment: 5 pages, 2 figures, accepted for publication in ApJ Lette
Human and animal Trypanosomes in Côte d'Ivoire form a single breeding population.
BACKGROUND: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. METHODOLOGY/PRINCIPAL FINDINGS: A collection of sympatric T. brucei isolates from Côte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. CONCLUSIONS/SIGNIFICANCE: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense
The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Vo/Ro
We establish an extragalactic, zero-motion frame of reference within the
deepest optical image of a globular star cluster, an HST 123-orbit exposure of
M4 (GO 8679, cycle 9). The line of sight beyond M4 (l,b (deg) = 351,16)
intersects the inner halo (spheroid) of our Galaxy at a tangent-point distance
of 7.6 kpc (for Ro = 8 kpc). We isolate these spheroid stars from the cluster
based on their proper motions over the 6-year baseline between these and
previous epoch HST data (GO 5461, cycle 4). Distant background galaxies are
also found on the same sight line using image-morphology techniques. This fixed
reference frame allows us to independently determine the fundamental Galactic
constant, Vo/Ro = 25.3 +/- 2.6 km/s/kpc, thus providing a velocity of the Local
Standard of Rest, v = 202.7 +/- 24.7 km/s for Ro = 8.0 +/- 0.5 kpc. Secondly,
the galaxies allow a direct measurement of M4's absolute proper motion,
mu_total = 22.57 +/- 0.76 mas/yr, in excellent agreement with recent studies.
The clear separation of galaxies from stars in these deep data also allow us to
search for inner-halo white dwarfs. We model the conventional Galactic
contributions of white dwarfs along our line of sight and predict 7.9 (thin
disk), 6.3 (thick disk) and 2.2 (spheroid) objects to the limiting magnitude at
which we can clearly delineate stars from galaxies (V = 29). An additional 2.5
objects are expected from a 20% white dwarf dark halo consisting of 0.5 Mo
objects, 70% of which are of the DA type. After considering the kinematics and
morphology of the objects in our data set, we find the number of white dwarfs
to be consistent with the predictions for each of the conventional populations.
However, we do not find any evidence for dark halo white dwarfs.Comment: 31 pages, including 6 diagrams and 2 tables. Accepted for publication
in Ap
Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci
African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics
- …