39,064 research outputs found
Modeling and control of flexible structures
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory
Two-dimensional oscillating airfoil test apparatus
A two dimensional oscillating airfoil test apparatus is presented as a method of measuring unsteady aerodynamic forces on an airfoil or rotor blade section. The oscillating airfoil test rig, which is being built for use in an 11 X 11-foot transonic wind tunnel (speed range M = 0.4 - 1.4), will allow determination of unsteady loadings and detailed pressure distributions on representative airfoil sections undergoing simulated pitching and flapping motions. The design details of the motion generating system and supporting structure are presented. This apparatus is now in the construction phase
Vortex-type elastic structured media and dynamic shielding
The paper addresses a novel model of metamaterial structure. A system of
spinners has been embedded into a two-dimensional periodic lattice system. The
equations of motion of spinners are used to derive the expression for the
chiral term in the equations describing the dynamics of the lattice. Dispersion
of elastic waves is shown to possess innovative filtering and polarization
properties induced by the vortextype nature of the structured media. The
related homogenised effective behavior is obtained analytically and it has been
implemented to build a shielding cloak around an obstacle. Analytical work is
accompanied by numerical illustrations.Comment: 24 pages, 13 figure
A real-time digital computer program for the simulation of a single rotor helicopter
A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case
Assembly and force measurement with SPM-like probes in holographic optical tweezers
We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space
Morphology and thermal conductivity of model organic aerogels
The intersection volume of two independent 2-level cut Gaussian random fields
is proposed to model the open-cell microstructure of organic aerogels. The
experimentally measured X-ray scattering intensity, surface area and solid
thermal conductivity of both polymeric and colloidal organic aerogels can be
accounted for by the model.Comment: 5 pages. RevTex with 4 encapsulated figures. Higher resolution
figures have been submitted for publication. To be published in Phys. Rev. E
(Rapid Comm.). email, [email protected]
Unified control/structure design and modeling research
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed
Numerical study of critical properties and hidden orders in dimerized spin ladders
Dimerized antiferromagnetic spin-1/2 ladders are known to exhibit a quantum
critical phase transition in the ground state, the existence or absence of
which is dependent on the dimerization pattern of the ladder. The gapped phases
cannot be distinguished by the conventional Landau long-range order parameter.
However, they possess a non-local (hidden) string order parameter, which is
non-zero in one phase and vanishes in the other. We use an exact
diagonalization technique to calculate ground state energies, energy gaps and
string order parameters of dimerized two- and three-leg Heisenberg ladders, as
well as a critical scaling analysis to yield estimates of the critical
exponents nu and beta.Comment: 7 pages, 14 figures. V.2: Extended version to appear in PR
A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm
We report Gemini-South GMOS observations of the exoplanet system WASP-29
during primary transit as a test case for differential spectrophotometry. We
use the multi-object spectrograph to observe the target star and a comparison
star simultaneously to produce multiple light curves at varying wavelengths.
The 'white' light curve and fifteen 'spectral' light curves are analysed to
refine the system parameters and produce a transmission spectrum from 515 to
720nm. All light curves exhibit time-correlated noise, which we model using a
variety of techniques. These include a simple noise rescaling, a Gaussian
process model, and a wavelet based method. These methods all produce consistent
results, although with different uncertainties. The precision of the
transmission spectrum is improved by subtracting a common signal from all the
spectral light curves, reaching a typical precision of ~1x10^-4 in transit
depth. The transmission spectrum is free of spectral features, and given the
non-detection of a pressure broadened Na feature, we can rule out the presence
of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a
narrow Na core. This indicates that Na is not present in the atmosphere, and/or
that clouds/hazes play a significant role in the atmosphere and mask the broad
wings of the Na feature, although the former is a more likely explanation given
WASP-29b's equilibrium temperature of ~970 K, at which Na can form various
compounds. We also briefly discuss the use of Gaussian process and wavelet
methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected
in version
- …