2 research outputs found

    Near-Field Pressure Signature Splicing for Low-Fidelity Design Space Exploration of Supersonic Aircraft

    Get PDF
    As interest in supersonic overland flight intensifies, new ways to meet government restrictions on sonic boom loudness must be implemented. Low-fidelity aerodynamic tools, such as PANAIR, can estimate the near-field pressure signature that ultimately determines the loudness of the sonic boom at the ground. These tools can greatly benefit the exploration of large design spaces due to their computational efficiency. One of the limitations of low-fidelity tools is the accuracy of the solution produced, which is dependent on the fundamental physical assumptions made in the development of the governing equations. If flow patterns are produced that severely violate these fundamental assumptions, the validity of the near-field pressure signature is compromised. A method is proposed that splices together near-field pressure signatures from a low-fidelity and a higher-fidelity tool by cutting each pressure signature at a critical point and then blending the low-fidelity signature into the higher-fidelity signature. By splicing the signatures together, sections of the low-fidelity signature that represent fundamental violations of the governing equation are removed. This method allows for the exploration of the design space corresponding to areas on the geometry that produce accurate results in a low-fidelity signature. The method is tested on the JAXA Wing Body geometry from the Second AIAA Sonic Boom Prediction Workshop and shows that perturbations to this geometry can produce loudness results that match the high-fidelity results to within 0.4 PLdB

    A Multi-Fidelity Prediction of Aerodynamic and Sonic Boom Characteristics of the JAXA Wing Body

    Get PDF
    This paper presents a detailed comparison between the linear panel solver PANAIR A502 and the in-house Navier–Stokes solver UNS3D for a supersonic low-boom geometry. The high-fidelity flow solver was used to predict both the inviscid and laminar flow about the aircraft geometry. The JAXA wing body was selected as the supersonic low-boom geometry for this study. A comparison of the undertrack near-field pressure signatures showed good agreement between the three levels of model fidelity along the first 0.8L of the signature. Large oscillations in the PANAIR results were observed. The PANAIR discrepancies were traced back to violations of the underlying assumptions within PANAIR: (1) small perturbation velocities and (2) no regions of transonic flow. These violations were due to large changes in surface curvature resulting in a strong expansion wave. While investigating the PANAIR discrepancy, measures of the fundamental assumptions of the Prandtl-Glauert equation used by PANAIR were quantified and used to assess the applicability of PANAIR to a given problem. Further comparison of surface temperatures predicted between the inviscid and laminar solutions was made. It was found that the recovery temperatures predicted by the inviscid solution were 5% less than those predicted by the laminar solution in likely candidate regions for distributed adaptivity. A surface deformation was added to the forward portion of the geometry to asses the viability of a future optimization study in this region. In this study, it was found that the near-field and ground signatures predicted by PANAIR and the UNS3D solutions responded in similar manners to the deformation
    corecore