147 research outputs found

    Il Laboratorio per l’accreditamento di Ateneo. Prime valutazioni di un’esperienza di formazione personale e collettiva a UNIMORE

    Get PDF
    A Workshop for the accreditation of the University. Preliminary evaluations of an experience of individual and collective training at UNIMORE. The paper presents the results of the Workshop for the accreditation of the University, organized by the University of Modena and Reggio Emilia (UNIMORE). The workshop is devoted to the students that are members of the Joint docents - students committees and consists of several educational activities ranging from lessons to practical exercises. The workshop is based on a principle established in the Document for QA of the education of UNIMORE, that is the commitment of the University «to act deliberately so that students are involved, individually and collectively, as partners in quality assurance and in strengthening their educational experience». The work considers some problematic aspects that gradually have emerged in the course of its implementation; it develops some critical reflections on the experience and concludes by outlining possible developments of this work, which seems to be unique on the national scene

    Local density of states in metal - topological superconductor hybrid systems

    Full text link
    We study by means of the recursive Green's function technique the local density-of-states of (finite and semi-infinite) multi-band spin-orbit coupled semiconducting nanowires in proximity to an s-wave superconductor and attached to normal-metal electrodes. When the nanowire is coupled to a normal electrode, the zero-energy peak, corresponding to the Majorana state in the topological phase, broadens with increasing transmission between the wire and the leads, eventually disappearing for ideal interfaces. Interestingly, for a finite transmission a peak is present also in the normal electrode, even though it has a smaller amplitude and broadens more rapidly with the strength of the coupling. Unpaired Majorana states can survive close to a topological phase transition even when the number of open channels (defined in the absence of superconductivity) is even. We finally study the Andreev-bound-state spectrum in superconductor-normal metal-superconductor junctions and find that in multi-band nanowires the distinction between topologically trivial and non-trivial systems based on the number of zero-energy crossings is preserved.Comment: 11 pages, 12 figures, published versio

    Switching magnetization with a Weyl semimetal

    Get PDF
    Energy-efficient magnetization manipulation is a prerequisite for competitive spintronic devices. The Weyl semimetal WTe2 can act as a spin current source that enables magnetization switching of an adjacent ferromagnet at low power consumption and additionally induces chiral magnetism.</p

    Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy

    Get PDF
    Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Large-area epitaxial monolayer MoS2

    Get PDF
    Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80um

    How close can one approach the Dirac point in graphene experimentally?

    Full text link
    The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state with a few charge carriers per entire micron-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap

    The Physics of Kondo Impurities in Graphene

    Full text link
    This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss in detail the physics of these models, including their quantum phase transitions and the effect of carrier doping, and confront this with existing experimental data. Finally, we point out connections to other quantum impurity problems, e.g., in unconventional superconductors, topological insulators, and quantum spin liquids.Comment: 27 pages, 8 figs. Review article prepared for Rep. Prog. Phys. ("key issues" section). (v2) Final version as publishe

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
    • …
    corecore