205 research outputs found
Temporal fluctuations of waves in weakly nonlinear disordered media
We consider the multiple scattering of a scalar wave in a disordered medium
with a weak nonlinearity of Kerr type. The perturbation theory, developed to
calculate the temporal autocorrelation function of scattered wave, fails at
short correlation times. A self-consistent calculation shows that for
nonlinearities exceeding a certain threshold value, the multiple-scattering
speckle pattern becomes unstable and exhibits spontaneous fluctuations even in
the absence of scatterer motion. The instability is due to a distributed
feedback in the system "coherent wave + nonlinear disordered medium". The
feedback is provided by the multiple scattering. The development of instability
is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in
Phys. Rev.
More is the Same; Phase Transitions and Mean Field Theories
This paper looks at the early theory of phase transitions. It considers a
group of related concepts derived from condensed matter and statistical
physics. The key technical ideas here go under the names of "singularity",
"order parameter", "mean field theory", and "variational method".
In a less technical vein, the question here is how can matter, ordinary
matter, support a diversity of forms. We see this diversity each time we
observe ice in contact with liquid water or see water vapor, "steam", come up
from a pot of heated water. Different phases can be qualitatively different in
that walking on ice is well within human capacity, but walking on liquid water
is proverbially forbidden to ordinary humans. These differences have been
apparent to humankind for millennia, but only brought within the domain of
scientific understanding since the 1880s.
A phase transition is a change from one behavior to another. A first order
phase transition involves a discontinuous jump in a some statistical variable
of the system. The discontinuous property is called the order parameter. Each
phase transitions has its own order parameter that range over a tremendous
variety of physical properties. These properties include the density of a
liquid gas transition, the magnetization in a ferromagnet, the size of a
connected cluster in a percolation transition, and a condensate wave function
in a superfluid or superconductor. A continuous transition occurs when that
jump approaches zero. This note is about statistical mechanics and the
development of mean field theory as a basis for a partial understanding of this
phenomenon.Comment: 25 pages, 6 figure
The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun.
Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied
the joint dynamics of a classical point particle and a wave type generalization
of the Newtonian gravity potential, coupled in a regularized way. In the
present paper the many-body dynamics of this model is studied. The Vlasov
continuum limit is obtained in form equivalent to a weak law of large numbers.
We also establish a central limit theorem for the fluctuations around this
limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two
inequalities in section 4, and definition of a Banach space in appendix A1.
Presentation of LLN and CLT in section 4.3 improved. Notation improve
Student engagement with feedback and attainment: the role of academic self-efficacy
Academic self-efficacy, the belief that one can achieve desired academic goals plays an important role in learning. This study aimed to determine the extent to which academic self-efficacy mediates relationships between studentsâ perceptions of feedback and their academic attainment. An opportunity sample of 232 students (123 female) in their first year of higher education reported their academic self-efficacy and evaluated their assessment experience, including the perceived quantity and quality of feedback and the extent to which this feedback elicited an active response. Positive associations were observed between academic attainment and studentsâ confidence that they could achieve their desired grades and adopt appropriate study behaviours. A negative association was identified between attainment and confidence to talk about their studies. Attainment was not related to the perceived quantity or quality of feedback, but did bear a significant association with the reported use to which feedback was put. Positive associations were generally identified between academic self-efficacy and perceptions of feedback. Path models revealed that inter-relationships were best represented by a model wherein academic self-efficacy mediated links between studentsâ perceptions of feedback and academic attainment. The findings highlight the need to incorporate characteristics of the individual into an understanding of student engagement with feedback
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
An integrated map of structural variation in 2,504 human genomes
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association. © 2015 Macmillan Publishers Limited. All rights reserved
Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease
Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
- âŠ