833 research outputs found

    Melilotoside Derivatives from Artemisia splendens (Asteraceae)

    Get PDF
    A combination of solid-phase-extraction (SPE) and reversed-phase preparative high-performance liquid chromatography (prep-HPLC) of the methanolic extract of the aerial parts of Artemisia splendens (common name: “Asia Minor Wormwood”), an endemic Iranian species, afforded Z- and E-melilotosides (1 and 2), Z- and E-4-methoxy-melilotosides (3 and 4), and a new dimer, bis-ortho-Z-melilotoside (5, named: splendenoside). Whilst the structures of these compounds (1-5) were elucidated unequivocally by spectroscopic means, the in vitro free-radical-scavenging property of 1-5 was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. This is the first report on the occurrence of any melilotoside derivatives in the genus Artemisia

    Melilotoside derivatives from Artemisia splendens (Asteraceae)

    Get PDF
    All rights reserved.A combination of solid-phase-extraction (SPE) and reversed-phase preparative high-performance liquid chromatography (prep-HPLC) of the methanolic extract of the aerial parts of Artemisia splendens (common name: “Asia Minor Wormwood”), an endemic Iranian species, afforded Z- and E-melilotosides (1 and 2), Z- and E-4-methoxy-melilotosides (3 and 4), and a new dimer, bis-ortho-Z-melilotoside (5, named: splendenoside). Whilst the structures of these compounds (1-5) were elucidated unequivocally by spectroscopic means, the in vitro free-radical-scavenging property of 1-5 was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. This is the first report on the occurrence of any melilotoside derivatives in the genus Artemisia. © 2016 ACG Publications

    Black Hole Deconstruction

    Get PDF
    A D4-D0 black hole can be deconstructed into a bound state of D0 branes with a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We find a scaling limit in which the disk and core drop inside an AdS_2 throat. Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a second scaling region describing the D6-anti-D6 pair. It is shown that the M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in the far asymptotic region reduce to global, rather than Poincare, time translations in this core AdS_3. We further find that the quantum mechanical ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Generalized Geometry and M theory

    Full text link
    We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected kinetic term and references adde

    A General Black String and its Microscopics

    Get PDF
    Using G2(2) dualities we construct the most general black string solution of minimal five-dimensional ungauged supergravity. The black string has five independent parameters, namely, the magnetic one-brane charge, smeared electric zero-brane charge, boost along the string direction, energy above the BPS bound, and rotation in the transverse space. In one extremal limit it reduces to the three parameter supersymmetric string of five-dimensional minimal supergravity; in another extremal limit it reduces to the three parameter non-supersymmetric extremal string of five-dimensional minimal supergravity. It also admits an extremal limit when it has maximal rotation in the four-dimensional transverse space. The decoupling limit of our general black string is a BTZ black hole times a two sphere. The macroscopic entropy of the string is reproduced by the Maldacena-Strominger-Witten CFT in appropriate ranges of the parameters. When the pressureless condition is imposed, our string describes the infinite radius limit of the most general class of black rings of minimal supergravity. We discuss implications our solution has for extremal and non-extremal black rings of minimal supergravity.Comment: 35 pages; 3 figures; v2 section 4.1.1 rewritten + minor changes + ref adde

    Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions

    Full text link
    We consider a D dimensional Kasner type diagonal spacetime where metric functions depend only on a single coordinate and electromagnetic field shares the symmetries of spacetime. These solutions can describe static cylindrical or cosmological Einstein-Maxwell vacuum spacetimes. We mainly focus on electrovacuum solutions and four different types of solutions are obtained in which one of them has no four dimensional counterpart. We also consider the properties of the general solution corresponding to the exterior field of a charged line mass and discuss its several properties. Although it resembles the same form with four dimensional one, there is a difference on the range of the solutions for fixed signs of the parameters. General magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-Melvin magnetic universe for a special choice of the parameters. The Kasner forms of the general solution are also presented for the cylindrical or cosmological cases.Comment: 16 pages, Revtex. Text and references are extended, Published versio

    An Infinite-Dimensional Family of Black-Hole Microstate Geometries

    Get PDF
    We construct the first explicit, smooth, horizonless black-hole microstate geometry whose moduli space is described by an arbitrary function of one variable and is thus infinite-dimensional. This is achieved by constructing the scalar Green function on a simple D6 anti-D6 background, and using this Green function to obtain the fully back-reacted solution for a supertube with varying charge density in this background. We show that this supertube can store parametrically more entropy than in flat space, confirming the entropy enhancement mechanism that was predicted using brane probes. We also show that all the local properties of the fully back-reacted solution can, in fact, be obtained using the DBI action of an appropriate brane probe. In particular, the supergravity and the DBI analysis yield identical functional bubble equations that govern the relative locations of the centers. This indicates that there is a non-renormalization theorem that protects these functional equations as one moves in moduli space. Our construction creates configurations that are beyond the scope of recent arguments that appear to put strong limits on the entropy that can be found in smooth supergravity solutions.Comment: 46 pages, 1 figure, LaTe
    • 

    corecore