3 research outputs found

    Prestimulus oscillatory brain activity interacts with evoked recurrent processing to facilitate conscious visual perception.

    Get PDF
    We investigated whether prestimulus alpha-band oscillatory activity and stimulus-elicited recurrent processing interact to facilitate conscious visual perception. Participants tried to perceive a visual stimulus that was perceptually masked through object substitution masking (OSM). We showed that attenuated prestimulus alpha power was associated with greater negative-polarity stimulus-evoked ERP activity that resembled the visual awareness negativity (VAN), previously argued to reflect recurrent processing related to conscious perception. This effect, however, was not associated with better perception. Instead, when prestimulus alpha power was elevated, a preferred prestimulus alpha phase was associated with a greater VAN-like negativity, which was then associated with better cue perception. Cue perception was worse when prestimulus alpha power was elevated but the stimulus occurred at a nonoptimal prestimulus alpha phase and the VAN-like negativity was low. Our findings suggest that prestimulus alpha activity at a specific phase enables temporally selective recurrent processing that facilitates conscious perception in OSM

    Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults

    No full text
    Each year over 16 million older Americans undergo general anesthesia for surgery, and up to 40% develop postoperative delirium and/or cognitive dysfunction (POCD). Delirium and POCD are each associated with decreased quality of life, early retirement, increased 1-year mortality, and long-term cognitive decline. Multiple investigators have thus suggested that anesthesia and surgery place severe stress on the aging brain, and that patients with less ability to withstand this stress will be at increased risk for developing postoperative delirium and POCD. Delirium and POCD risk are increased in patients with lower preoperative cognitive function, yet preoperative cognitive function is not routinely assessed, and no intraoperative physiological predictors have been found that correlate with lower preoperative cognitive function. Since general anesthesia causes alpha-band (8–12 Hz) electroencephalogram (EEG) power to decrease occipitally and increase frontally (known as “anteriorization”), and anesthetic-induced frontal alpha power is reduced in older adults, we hypothesized that lower intraoperative frontal alpha power might correlate with lower preoperative cognitive function. Here, we provide evidence that such a correlation exists, suggesting that lower intraoperative frontal alpha power could be used as a physiological marker to identify older adults with lower preoperative cognitive function. Lower intraoperative frontal alpha power could thus be used to target these at-risk patients for possible therapeutic interventions to help prevent postoperative delirium and POCD, or for increased postoperative monitoring and follow-up. More generally, these results suggest that understanding interindividual differences in how the brain responds to anesthetic drugs can be used as a probe of neurocognitive function (and dysfunction), and might be a useful measure of neurocognitive function in older adults
    corecore