27 research outputs found

    About the stability of the Active Queue Management mechanism

    No full text
    .In this paper, we discuss the influence of multiple bottlenecks on the stability of Active Queue Management (AQM) controllers, usually configured on a single bottleneck basis. To see this, we consider a network scenario where RED is configured at each router according to previously developed control theoretic techniques. These configuration rules assure stability in a single bottleneck scenario. Yet, we show that instability may arise when two links become congested. We justify this result through a multiple bottleneck model

    Scalable and privacy-preserving admission control for smart grids

    No full text
    Energy demand and production need to be constantly matched in the power grid. The traditional paradigm to continuously adapt the production to the demand is challenged by the increasing penetration of more variable and less predictable energy sources, like solar photovoltaics and wind power. An alternative approach is the so called direct control of some inherently flexible electric loads to shape the demand. Direct control of deferrable loads presents analogies with flow admission control in telecommunication networks: a request for network resources (bandwidth or energy) can be delayed on the basis of the current network status in order to guarantee some performance metrics. In this paper we go beyond such an analogy, showing that usual teletraffic tools can be effectively used to control energy loads. In particular we propose a family of control schemes which can be easily tuned to achieve the desired trade-off among resources usage, control overhead and privacy leakage

    Scalable and privacy-preserving admission control for smart grids

    No full text
    Energy demand and production need to be constantly matched in the power grid. The traditional paradigm to continuously adapt the production to the demand is challenged by the increasing penetration of more variable and less predictable energy sources, like solar photovoltaics and wind power. An alternative approach is the so called direct control of some inherently flexible electric loads to shape the demand. Direct control of deferrable loads presents analogies with flow admission control in telecommunication networks: a request for network resources (bandwidth or energy) can be delayed on the basis of the current network status in order to guarantee some performance metrics. In this paper we go beyond such an analogy, showing that usual teletraffic tools can be effectively used to control energy loads. In particular we propose a family of control schemes which can be easily tuned to achieve the desired trade-off among resources usage, control overhead and privacy leakage
    corecore