760 research outputs found

    Women\u27s Experiences in the Transition from Capstone Design Courses to Engineering Workplaces

    Get PDF
    Substantial research over the past few decades has documented the challenges women experience both as students in engineering programs and as professionals in engineering workplaces. Few studies, however, have followed women from one context to the other to explore the ways in which school experiences, and particularly capstone experiences designed to facilitate this transition, do and do not prepare women for their work as practicing engineers. To address this gap, we draw on data from a larger multi-institution study to address the question, “How do women experience the transition from engineering school to engineering work?” Participants for this study are drawn from a larger study across four universities (three mechanical engineering programs and one engineering science program). All participants identified as “female” on a screening questionnaire that included options for transgender and gender-nonconforming, as well as an option to skip the question. The full data set includes interviews with the participants conducted at the end of their capstone design course, responses to open-ended questions sent each week during their first 12 weeks of work, and interviews conducted after three, six, and 12 months of work. To answer the research question, we used purposeful sampling to identify four women whose interviews represented different trajectories across this school-to-work transition; we then used constructed narrative analysis to present their individual stories and identify salient points of similarity and difference for discussion. We also present implications for engineering educators, including that life-long learning should be expected, communication and collaboration are as essential workplace skills as technical competencies, and that gender is not necessarily a homogenizing force. Above all, we emphasize the power of the individual voice in better understanding the experiences of our students

    Improvements to GALA and dbERGE II: databases featuring genomic sequence alignment, annotation and experimental results

    Get PDF
    We describe improvements to two databases that give access to information on genomic sequence similarities, functional elements in DNA and experimental results that demonstrate those functions. GALA, the database of Genome ALignments and Annotations, is now a set of interlinked relational databases for five vertebrate species, human, chimpanzee, mouse, rat and chicken. For each species, GALA records pairwise and multiple sequence alignments, scores derived from those alignments that reflect the likelihood of being under purifying selection or being a regulatory element, and extensive annotations such as genes, gene expression patterns and transcription factor binding sites. The user interface supports simple and complex queries, including operations such as subtraction and intersections as well as clustering and finding elements in proximity to features. dbERGE II, the database of Experimental Results on Gene Expression, contains experimental data from a variety of functional assays. Both databases are now run on the DB2 database management system. Improved hardware and tuning has reduced response times and increased querying capacity, while simplified query interfaces will help direct new users through the querying process. Links are available at http://www.bx.psu.edu/

    TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates

    Get PDF
    Transposed elements (TEs) are mobile genetic sequences. During the evolution of eukaryotes TEs were inserted into active protein-coding genes, affecting gene structure, expression and splicing patterns, and protein sequences. Genomic insertions of TEs also led to creation and expression of new functional non-coding RNAs such as micro- RNAs. We have constructed the TranspoGene database, which covers TEs located inside proteincoding genes of seven species: human, mouse, chicken, zebrafish, fruit fly, nematode and sea squirt. TEs were classified according to location within the gene: proximal promoter TEs, exonized TEs (insertion within an intron that led to exon creation), exonic TEs (insertion into an existing exon) or intronic TEs. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. In addition, we created microTranspoGene: a database of human, mouse, zebrafish and nematode TEderived microRNAs. The TranspoGene and micro- TranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome

    Integrating diverse databases into an unified analysis framework: a Galaxy approach

    Get PDF
    Recent technological advances have lead to the ability to generate large amounts of data for model and non-model organisms. Whereas, in the past, there have been a relatively small number of central repositories that serve genomic data, an increasing number of distinct specialized data repositories and resources have been established. Here, we describe a generic approach that provides for the integration of a diverse spectrum of data resources into a unified analysis framework, Galaxy (http://usegalaxy.org). This approach allows the simplified coupling of external data resources with the data analysis tools available to Galaxy users, while leveraging the native data mining facilities of the external data resources

    Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    Get PDF
    RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines

    RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data

    Get PDF
    Summary: Mapping of next-generation sequencing data derived from RNA samples (RNAseq) presents different genome mapping challenges than data derived from DNA. For example, tags that cross exon-junction boundaries will often not map to a reference genome, and the strand specificity of the data needs to be retained. Here we present RNA-MATE, a computational pipeline based on a recursive mapping strategy for placing strand specific RNAseq data onto a reference genome. Maximizing the mappable tags can provide significant savings in the cost of sequencing experiments. This pipeline provides an automatic and integrated way to align color-space sequencing data, collate this information and generate files for examining gene-expression data in a genomic context

    A Formal Approach to Support Interoperability in Scientific Meta-workflows

    Get PDF
    Scientific workflows orchestrate the execution of complex experiments frequently using distributed computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing workflows from potentially different workflow systems to achieve more complex and experimentation minimizing workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. This paper is focused at fostering interoperability across meta-workflows that combine workflows of different workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow and its different types to standardize their data structures used to describe workflows to be published and shared via public repositories. The paper also includes thorough formalization of two workflow interoperability approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the concepts of meta-workflows and workflow interoperability within a scientific simulation platform
    corecore