108 research outputs found
Recommended from our members
Influence of near-fault effects and of incident angle of earthquake waves on the seismic inelastic demands of a typical Jack-Up platform
In this paper, the potential influence of near-fault effects and of the incident angle of earthquake waves to the seismic response of a typical jack-up offshore platform is assessed by means of incremental dynamic analysis involving a three dimensional distributed plasticity finite element model. Two horizontal orthogonal strong ground motion components of a judicially chosen near-fault seismic record is considered to represent the input seismic action along different incident angles. The fault-normal component exhibits a prominent forward-directivity velocity pulse pulse-like) whose period lies close to the fundamental natural period of the considered structure following a âworst case scenarioâ approach, while the fault-parallel component does not include such a pulse. Pertinent numerical data demonstrate that the fault normal component poses much higher seismic demands to the âprototypeâ jack-up structure considered compared to the fault parallel component. Further, significant variation in the collapse resistance/capacity values is observed among different incident angles especially for the âcriticalâ fault normal component. It is concluded that the combined effect of forward-directivity phenomena and the orientation of deployed jack-up platforms with respect to neighbouring active seismic faults needs to be explicitly accounted for in site-specific seismic risk assessment studies. Further research is warranted to propose recommendations on optimum orientation of jack-up structures operating in the proximity of active seismic faults to minimize seismic risk
Recommended from our members
A non-separable stochastic model for pulse-like ground motions
A phenomenological non-separable non-stationary stochastic model is proposed to represent near-fault pulse-like ground motions (PLGMs) by means of a parametrically defined evolutionary power spectrum (EPSD). Numerical data pertaining to ensembles of EPSD compatible realizations and considering statistical analysis of peak elastic and inelastic spectral ordinates demonstrate the applicability of the model to capture the salient effects of PLGMs to structural responses. To this aim, the model parameters are calibrated against a field recorded PLGM. Further numerical data considering stochastic processes compatible with the response spectrum of the European aseismic code (EC8) are furnished to demonstrate the potential of the proposed model for including near-fault effects to spectrum compatible representations of the seismic action. It is foreseen that this model can be a useful tool in accounting for the low-frequency content of PLGMs in both Monte Carlo simulation-based analyses and in statistical linearization based studies
Recommended from our members
A stochastic approach to synthesizing response spectrum compatible seismic accelerograms
Regulatory agencies require the use of artificial accelerograms satisfying specific criteria of compatibility with a given design spectrum, as input for certain types of analyses for the aseismic design of critical facilities. Most of the numerical methods for simulating seismic motions compatible with a specified design (target) spectrum proposed by various researchers require that a number of real recorded seismic accelerograms of appropriate frequency content is available. To by-pass this requirement, a previously established in the literature probabilistic approach to yield simulated earthquake records whose response spectrum achieves on average a certain level of agreement with a target spectrum is employed in the present paper. At the core of the above method lies the adoption of an appropriate parametric power spectrum model capable of accounting for various site-specific soil conditions. In this regard, the potential of two different, commonly, used spectral forms is evaluated for this purpose in context with the design spectrum defined by the European Code provisions. Next, an iterative wavelet-based matching procedure is applied to the thus acquired records to enhance, individually, the agreement of the corresponding response spectra with the targeted one. Special attention is paid to ensure that the velocity and the displacement time histories associated with the finally obtained artificial accelerograms are physically sound by means of appropriate baseline correction techniques
Recommended from our members
A sub-Nyquist co-prime sampling music spectral approach for natural frequency identification of white-noise excited structures
Motivated by practical needs to reduce data transmission payloads in wireless sensors for vibration-based monitoring of civil engineering structures, this paper proposes a novel approach for identifying resonant frequencies of white-noise excited structures using acceleration measurements acquired at rates significantly below the Nyquist rate. The approach adopts the deterministic co-prime sub-Nyquist sampling scheme, originally developed to facilitate telecommunication applications, to estimate the autocorrelation function of response acceleration time-histories of low-amplitude white-noise excited structures treated as realizations of a stationary stochastic process. This is achieved without posing any sparsity conditions to the signals. Next, the standard MUSIC algorithm is applied to the estimated autocorrelation function to derive a denoised super-resolution pseudo-spectrum in which natural frequencies are marked by prominent spikes. The accuracy and applicability of the proposed approach is numerically assessed using computer-generated noise-corrupted acceleration time-history data obtained by a simulation-based framework pertaining to a white-noise excited structural system with two closely-spaced modes of vibration carrying the same amount of energy, and a third isolated weakly excited vibrating mode. All three natural frequencies are accurately identified by sampling at as low as 78% below Nyquist rate for signal to noise ratio as low as 0dB (i.e., energy of additive white noise equal to the signal energy), suggesting that the proposed approach is robust and noise-immune while it can reduce data transmission requirements in acceleration wireless sensors for natural frequency identification of engineering structures
Recommended from our members
Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures
In recent years different inerter - based vibration absorbers (IVAs) emerged for the earthquake protection of building structures coupling viscous and tuned - mass dampers with an inerter device . In the three most popular IVAs the inerter is functioning either as a motion amplifier [tuned - viscous - mass - damper (TVMD) configuration], mass amplifier [tuned - mass - damper - inerter (T MDI) configuration], or mass substitute [tuned - inerter - damper (TID) configuration]. Previous work has shown that through proper tuning , IVAs achieve enhanced earthquake - induced vibration suppression and/or weight reduction compared to conventional dampers/absorbers , but at the expense of increased control forces exerted from the IVA to the host building structure . These potentially large forces are typically not accounted for by current IVA tuning approaches. In this regard, a multi-objective IVA design approach is herein developed to identify the compromise between the competing objectives of (i) suppressing earthquake-induced vibrations in buildings, and (ii) avoiding development of excessive IVA (control) forces, while, simultaneously, assessing the appropriateness of different modeling assumptions for practical design of IVAs for earthquake engineering applications . The potential of the approach to pinpoint Pareto optimal IVA designs against the above objectives is illustrated for different IVA placements along the height of a benchmark 9-storey steel frame structure. Objective (i) is quantified according to current performanc e-based seismic design trends using first-passage reliability criteria associated with the probability of exceeding pre-specified thresholds of storey drifts and/or floor accelerations being the engineering demand parameters (EDPs) of interest . A variant, simpler, formulation is also considered using as performance quantification the sum of EDPs variances in accordance to traditional tuning methods for dynamic vibration absorbers. Objective (ii) is quantified through the variance of the IVA force. It is found that reduction of IVA control force of up to 3 times can be achieved with insignificant deterioration of building performance com pared to the extreme Pareto optimal IVA design targeting maximum vibration suppression , while TID and TMDI a chieve practically the same building performance and significantly outperform the TVMD. Moreover, it is shown that the simpler variant formulation may provide significantly suboptimal reliability performance . Lastly, it is verified that the efficacy of optimal IVA designs for stationary conditions is maintained for non-stationary stochastic excitation model capturing typical evolutionary features of earthquake excitations
Derivation of equivalent linear properties of Bouc-Wen hysteretic systems for seismic response spectrum analysis via statistical linearization
A newly proposed statistical linearization based formulation is used to derive effective linear properties (ELPs), namely damping ratio and natural frequency, for stochastically excited hysteretic oscillatorsinvolving the Bouc-Wen force-deformation phenomenological model. This is achieved by first using a frequency domain statistical linearization step to substitute a Bouc-Wen oscillator by a third order linear system. Next, this third order linear system is reduced to a second order linear oscillator characterized by a set of ELPs by enforcing equality of certain response statistics of the two linear systems. The proposed formulation is utilized in conjunction with quasi-stationary stochastic processes compatible with elastic response spectra commonly used to represent the input seismic action in earthquake resistant design of structures. Then, the derived ELPs are used to estimate the peak response of Bouc-Wen hysteretic oscillators without numerical integration of the nonlinear equation of motion; this is done in the context of linear response spectrum-based dynamic analysis. Numerical results pertaining to the elastic response spectrum of the current European aseismic code provisions (EC8) are presented to demonstrate the usefulness of the proposed approach. These results are supported by pertinent Monte Carlo simulations involving an ensemble of non-stationary EC8 spectrum compatible accelerograms. The proposed approach can hopefully be an effective tool in the preliminary aseismic design stages of yielding structures and structural members commonly represented by the Bouc-Wen hysteretic model within either a force-based or a displacement-based context
Recommended from our members
Statistical linearization based estimation of the peak response of nonlinear systems subject to the EC8 design spectrum
A stochastic approach is proposed to obtain reliable estimates of the peak response of nonlinear systems to excitations specified via a responseâdesign seismic spectrum. This is achieved without resorting to numerical integration of the governing nonlinear equations of motion. First, a numerical scheme is utilized to derive a power spectrum which is compatible in a stochastic sense to a given elastic design spectrum. This spectrum is then treated as the excitation spectrum in the context of the statistical linearization method to determine effective parameters, damping and stiffness, corresponding to an equivalent linear system (ELS). The obtained parameters are used in conjunction with the linear design spectrum, for various values of damping, to estimate the response of certain nonlinear systems. The case of singleâdegreeâofâfreedom systems with cubic stiffness nonlinearity and hysteretic systems whose restoring force traces a bilinear law are considered in conjunction with the elastic design spectrum prescribed by the European aseismic code provisions (EC8). Monte Carlo simulations pertaining to an ensemble of nonâstationary EC 8 design spectrum compatible accelerograms are conducted to confirm that the average peak response of the nonlinear systems compare reasonably well with that of the ELS. This is true, even in cases where the response of the nonlinear oscillators deviates significantly from the linear one. In this manner, the proposed approach yields ELS which can reliably replace the original nonlinear systems in carrying out computationally efficient analyses in the initial stages of the aseismic design of structures under severe seismic excitations. Furthermore, the potential of this approach for developing inelastic design spectra from a given elastic design spectrum is established
Recommended from our members
Determination of design spectrum compatible evolutionary spectra via Monte Carlo peak factor estimation
The problem of generating ensembles of artificial non-stationary earthquake accelerograms compatible with a given (target) response/design spectrum is cast on a stochastic basis. The design spectrum of the European aseismic code provisions (EC8) for various soil conditions and damping ratios is used as a paradigm of a design/target spectrum. The generated accelerograms are construed as realizations of a non-stationary random process; they are char-acterized in the frequency domain by a parametrically defined evolutionary power spectrum (EPS). An appropriate least squared optimization problem is formulated for the determination of the parameters of the EPS. The solution of this problem involves the incorporation of a âpeak factorâ which is used to re-late the target spectrum to the EPS in a probabilistic context. To this end, a comprehensive Monte Carlo study is undertaken to estimate numerically the statistical properties of the peak factor from appropriately computed popula-tions, and to derive polynomial expressions for the median frequency-dependent peak factors (peak factor spectra). These expressions are used in conjunction with the herein adopted optimization problem to determine EPSs compatible with the EC8 design spectrum. The derived median peak factor spectra yield an excellent level of agreement between the EC8 spectrum and the ensemble average and median response spectra of simulated EPS-compatible ensembles of accelerograms
Derivation of Eurocode 8 spectrum-compatible time-histories from recorded seismic accelerograms via harmonic wavelets
A computationally efficient harmonic wavelet-based iterative procedure is proposed to modify suites of recorded accelerograms to be used in the aseismic design of critical structures regulated by the European code provisions (EC8). Special attention is focused on assessing the potential of appropriately defined orthogonal harmonic wavelet basis functions to derive design spectrum compatible time-histories which preserve the non-stationary characteristics of the original recorded signals. This is a quite desirable attribute in the practice of the aseismic design of yielding structures. In this regard, seven recorded accelerograms recommended for the design of base-isolated structures are modified via the proposed procedure and base-line adjusted to meet the pertinent EC8 compatibility criteria. The instantaneous energy (IE) and the mean instantaneous frequency (MIF) of the modified EC8 compatible time-histories extracted from appropriate wavelet-based signal time-frequency analyses are compared vis-Ă -vis the IE and MIF of the corresponding original accelerograms. Examining these numerical results, it is established that the herein proposed procedure is a useful tool for processing recorded accelerograms in cases where accounting for the time-varying energy content and frequency composition of strong ground motions associated with historic seismic events is deemed essential in aseismic design
Recommended from our members
A stochastic approach for deriving effective linear properties of bilinear hysteretic systems subject to design spectrum compatible strong ground motions
A novel statistical linearization based approach is proposed to derive effective linear properties (ELPs), namely damping ratio and natural frequency, for bilinear hysteretic oscillators subject to seismic excitations specified by an elastic response/design spectrum. First, an efficient numerical scheme is adopted to derive a power spectrum, satisfying a certain statistical criterion, which is compatible with the considered seismic spectrum. Next, the thus derived power spectrum is used in conjunction with a frequency domain higher-order statistical linearization formulation to substitute a bilinear hysteretic oscillator by a third order linear system. This is done by minimizing an appropriate error function in the least square sense. Then, this third-order linear system is reduced to a second order linear oscillator characterized by a set of ELPs by enforcing equality of certain response statistics of the two linear systems. The ELPs are utilized to estimate the peak response of the considered hysteretic oscillator in the context of linear response spectrum-based dynamic analysis. In this manner, the need for numerical integration of the nonlinear equation of motion is circumvented. Numerical results pertaining to the European EC8 elastic response spectrum are presented to demonstrate the applicability and usefulness of the proposed approach. These results are supported by Monte Carlo analyses involving an ensemble of 250 non-stationary artificial EC8 spectrum compatible accelerograms. The proposed approach can hopefully be an effective tool in the preliminary aseismic design stages of yielding structures following either a force-based or a displacement-based methodology
- âŠ