4 research outputs found

    Changes in Endocrine Orcadian Rhythms as Markers of Physiological and Pathological Brain Aging

    No full text
    We studied the circadian rhythm of plasma melatonin, growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH), and cortisol in 52 mentally healthy old subjects, 35 old demented patients, and 22 clinically healthy young controls. When compared to young controls, the circadian profile of plasma melatonin of old subjects, both demented or not, was clearly flattened, particularly during the night. The selective impairment of nocturnal melatonin secretion was significantly related to both the age and the severity of mental impairment (Mini Mental State Examination [MMSE] score). The PRL and GH circadian profiles were similar in the three groups during the day, but a significant lowering of the values recorded during the night occurred with aging. The impairment of the nocturnal secretion was related to the subjects' age and, for the GH secretory pattern only, also to the MMSE score. The ACTH circadian profile was similar in the three groups studied, even when old subjects exhibited higher ACTH levels throughout the 24h cycle, compared to young controls. Significantly higher cortisol values at evening- and nighttime occurred in elderly subjects and particularly in the demented group. Both the mean levels and the nadir values of plasma cortisol were positively related to age and negatively to MMSE score. In order to verify the sensitivity of the hypothalamo-pituitary-adrenal (HPA) axis to the steroid feedback, the circadian profile of plasma cortisol was evaluated also after dexamethasone (DXM) administration (1 mg at 23:00h); the sensitivity of the HPA axis was significantly impaired in old subjects and particularly in the demented ones. These findings suggest that the neuroendocrine alterations already present in physiological aging, due to both anatomical damages and unbalanced central neurotransmitters, are enhanced in senile dementia

    Decreased release of the angiogenic peptide vascular endothelial growth factor in Alzheimer’s disease: recovering effect with insulin and DHEA sulfate

    No full text
    Changes of vascular endothelial growth factor (VEGF) secretion have recently been demonstrated in patients with Alzheimer's disease (AD). Since VEGF has been involved in brain angiogenesis, neuroprotection and cerebromicrovascular exchange of substrates and nutrients, the study of VEGF could have important relapses into the pathogenesis and treatment of AD. Within this context, 35 healthy subjects (16 of young and 19 of old age), 18 patients with dementia of the vascular type (VAD) and 22 with dementia of the Alzheimer's type (AD) were included in the study. VEGF levels were determined in the supernates of circulating natural killer (NK) immune cells isolated by immunomagnetic separation (pure CD16 + CD56 + NK cells at a final density of 7.75 x 10(6) cells/ml). VEGF was measured in spontaneous conditions (without modulation) and after exposure of NK cells with IL-2, lipopolysaccharide (LPS), dehydroepiandrosterone sulfate (DHEAS), LPS + insulin, amyloid-beta (Abeta) fragment 1-42, the inactive sequence Abeta(40-1) and Abeta(1-42) + insulin. A significant decrease in VEGF released by NK cells was demonstrated in AD subjects compared to the other groups. No differences of VEGF levels were found between healthy subjects of old age and the VAD group. The incubation with LPS and DHEAS significantly increased, in a dose-dependent manner, VEGF levels in AD as well as in healthy subjects of young and old age and in VAD patients. The incubation of NK cells with Abeta(1-42) completely suppressed VEGF generation in AD subjects, also reducing VEGF release in the other groups. The co-incubation of NK with LPS + insulin, at different molar concentrations, significantly restored (4- and 6-fold increase from LPS alone) VEGF in AD, also enhancing VEGF secretion in healthy subjects and the VAD group, while the co-incubation of NK with Abeta(1-42) + insulin promptly abolished the negative effects of Abeta(1-42) on VEGF release. These data might suggest that the decreased VEGF secretion by peripheral immune cells of AD subjects could have a negative role for brain angiogenesis, neuroprotection and for brain microvascular permeability to nutrients, increasing brain frailty towards hypoxic injuries. On the contrary, insulin and DHEAS could have beneficial effects in AD, as well as in VAD and in physiological aging, by increasing, in a dose-dependent fashion, VEGF availability by peripheral and resident immune and endothelial cells, so contributing to increase its circulating pool
    corecore