2 research outputs found

    A smart devices based secondary prevention program for cerebrovascular disease patients

    Get PDF
    BackgroundCommercially available health devices are gaining momentum and represent a great opportunity for monitoring patients for prolonged periods. This study aimed at testing the feasibility of a smart device-based secondary prevention program in a cohort of patients with cryptogenic stroke.MethodsIn this proof-of-principle study, patients with non-disabling ischemic stroke and transient ischemic attacks (TIA) in the subacute phase were provided with a smartwatch and smart devices to monitor several parameters – i.e., oxygen saturation, blood pressure, steps a day, heart rate and heart rate variability - for a 4-week period (watch group). This group was compared with a standard-of-care group. Our primary endpoint was the compliance with the use of smart devices that was evaluated as the number of measures performed during the observation period.ResultsIn total, 161 patients were recruited, 87 in the WATCH group and 74 in the control group. In the WATCH group, more than 90% of patients recorded the ECG at least once a day. In total, 5,335 ECGs were recorded during the study. The median blood pressure value was 132/78 mmHg and the median oxygen saturation value was 97%. From a clinical standpoint, although not statistically significant, nine atrial fibrillation episodes (10.3%) in the WATCH group vs. 3 (4%) in the control group were detected.ConclusionOur study suggests that prevention programs for cerebrovascular disease may benefit from the implementation of new technologies

    Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles—A Narrative Review

    No full text
    The calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed throughout the human body. While primarily recognized as a nociceptive mediator, CGRP antagonists are currently utilized for migraine treatment. However, its role extends far beyond this, acting as a regulator of numerous biological processes. Indeed, CGRP plays a crucial role in vasodilation, inflammation, intestinal motility, and apoptosis. In this review, we explore the non-nociceptive effects of CGRP in various body systems, revealing actions that can be contradictory at times. In the cardiovascular system, it functions as a potent vasodilator, yet its antagonists do not induce arterial hypertension, suggesting concurrent modulation by other molecules. As an immunomodulator, CGRP exhibits intriguing complexity, displaying both anti-inflammatory and pro-inflammatory effects. Furthermore, CGRP appears to be involved in obesity development while paradoxically reducing appetite. A thorough investigation of CGRP’s biological effects is crucial for anticipating potential side effects associated with its antagonists’ use and for developing novel therapies in other medical fields. In summary, CGRP represents a neuropeptide with a complex systemic impact, extending well beyond nociception, thus offering new perspectives in medical research and therapeutic
    corecore