1,684 research outputs found
Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?
We present nonasymptotic upper and lower bounds on the maximum coding rate
achievable when transmitting short packets over a Rician memoryless
block-fading channel for a given requirement on the packet error probability.
We focus on the practically relevant scenario in which there is no \emph{a
priori} channel state information available at the transmitter and at the
receiver. An upper bound built upon the min-max converse is compared to two
lower bounds: the first one relies on a noncoherent transmission strategy in
which the fading channel is not estimated explicitly at the receiver; the
second one employs pilot-assisted transmission (PAT) followed by
maximum-likelihood channel estimation and scaled mismatched nearest-neighbor
decoding at the receiver. Our bounds are tight enough to unveil the optimum
number of diversity branches that a packet should span so that the energy per
bit required to achieve a target packet error probability is minimized, for a
given constraint on the code rate and the packet size. Furthermore, the bounds
reveal that noncoherent transmission is more energy efficient than PAT, even
when the number of pilot symbols and their power is optimized. For example, for
the case when a coded packet of symbols is transmitted using a channel
code of rate bits/channel use, over a block-fading channel with block
size equal to symbols, PAT requires an additional dB of energy per
information bit to achieve a packet error probability of compared to
a suitably designed noncoherent transmission scheme. Finally, we devise a PAT
scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics
decoding, whose performance are close ( dB gap at packet error
probability) to the ones predicted by our PAT lower bound. This shows that the
PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa
Low-latency Ultra Reliable 5G Communications: Finite-Blocklength Bounds and Coding Schemes
Future autonomous systems require wireless connectivity able to support
extremely stringent requirements on both latency and reliability. In this
paper, we leverage recent developments in the field of finite-blocklength
information theory to illustrate how to optimally design wireless systems in
the presence of such stringent constraints. Focusing on a multi-antenna
Rayleigh block-fading channel, we obtain bounds on the maximum number of bits
that can be transmitted within given bandwidth, latency, and reliability
constraints, using an orthogonal frequency-division multiplexing system similar
to LTE. These bounds unveil the fundamental interplay between latency,
bandwidth, rate, and reliability. Furthermore, they suggest how to optimally
use the available spatial and frequency diversity. Finally, we use our bounds
to benchmark the performance of an actual coding scheme involving the
transmission of short packets
Multiturn Measurements at the CERN SPS
The CERN SPS multiturn facility, based on the new beam orbit measurement system MOPOS, enables the User to acquire the position of the beam at each beam position monitor (BPM) over a number of consecutive turns. When the multiturn acquisition is synchronised with a perturbation imposed on the beam (for instance a fast kick), useful information about the optics of the SPS and the dynamic behaviour of the beam can be extracted from the data. A measurement of the amplitude and phase of the betatron oscillation at each BPM can be used to compare the theoretical optics functions with the real ones, and possibly to detect localised errors. Differences between two such measurements can be used to study the dependence on a variable parameter (e.g. beam intensity, beam energy, etc) and therefore indirectly measure quantities, like the impedance, distributed along the ring. Finally, due to 90 degrees phase advance lattice, plotting the positions measured at two consecutive BPMs against each other gives information about the behaviour of the beam in the transverse phase space. Results of measurements performed at the CERN SPS are presente
Tracking Study of the Effect of BPM Impedances in the SPS
Following the observation of a Transverse Mode Coupling Instability (TMCI) in the SPS [1, 2], a systematic estimate of the impedance of the various pieces of equipment installed in the machine has started. In this report the contribution of the Beam Position Monitor trapped modes to the global transverse impedance is considered. The trapped modes have been thus calculated with MAFIA and characterized with their resonator parameters. These impedances have been subsequently fed into the MOSES and HEADTAIL codes in order to evaluate the expected TMCI threshold in the SPS and compare it with the experimental observations
Considerations on the Transverse Emittance of the Fixed-Target Beam in the SPS in the PS2 Era
The range of the acceptable transverse emittances the Fixed-Target beams delivered to the SPS in the PS2 era is determined based on acceptance and other beam dynamics considerations in the SPS
Creativity in Conceptual Spaces
The main aim of this paper is contributing to what in the last few years has been known as computational creativity. This will be done by showing the relevance of a particular mathematical representation of G"ardenfors's conceptual spaces to the problem of modelling a phenomenon which plays a central role in producing novel and fruitful representations of perceptual patterns: analogy
Transverse Instabilities of the LHC Proton Beam in the SPS
The availability from the injectors of the proton beam required for the LHC era has allowed studying its transverse behaviour in the SPS. Profile and beam oscillation measurements evidenced the existence of strong transverse instabilities developing along the batch and inducing an emittance blow-up of increasing importance from the head to the tail of the batch. An intensity threshold, comparable to that observed for the development of the beam induced electron cloud, has been found for the onset of the above phenomena. The results of the measurements and their possible interpretation are presented
Comparison between measured and simulated beam loss patterns in the CERN SPS
A prototype of an LHC collimator has been tested with proton beams at the CERN SPS. The interaction of the circulating proton beam with the carbon collimator jaws generated secondary proton beams that were lost in the downstream SPS aperture. The measured beam loss patterns are compared with the results of dedicated loss simulations. The simulation package includes (1) a 6D particle tracking through the SPS lattice; (2) the scattering interaction of protons with the collimator jaw material; (3) the timedependent displacement of the collimator jaws with respect to the beam orbit; (4) a detailed aperture model of the full SPS ring. It is shown that the simulation tools can reliably predict the measured location of losses. This provides an important assessment of the simulation tools in view of the beam loss studies for the Large Hadron Collider (LHC)
Evaluation of Single-Cell Cavities Made of Forged Ingot Niobium at Jefferson Lab
Currently, fine grain niobium (Nb) (grain size ⌠50 ”m) and large grain Nb (grain size of a few cm) are being used for the fabrication of superconducting radio frequency (SRF) cavities. Medium grain forged ingot with grain size of a few hundred ”m may be beneficial for cost-effectiveness as well as providing better performance for future SRF-based accelerators. Forged ingot Nb with medium grain size is a novel production method to obtain Nb discs used for the fabrication of superconducting radio frequency cavities. We have fabricated two 1.5 GHz single cell cavities made from forged Nb ingot with a residual resistivity ratio of ⌠100. The cavities were chemically and mechanically polished and heat-treated in the temperature range of 650-1000 C before the rf test. One of the cavities reached an accelerating gradient of âŒ34 MV/m with a quality factor Q \u3e 1e10, while the second cavity was limited at 14 MV/m, likely due to a weld defect at the equator
- âŠ