528 research outputs found
Coherent 100G Nonlinear Compensation with Single-Step Digital Backpropagation
Enhanced-SSFM digital backpropagation (DBP) is experimentally demonstrated
and compared to conventional DBP. A 112 Gb/s PM-QPSK signal is transmitted over
a 3200 km dispersion-unmanaged link. The intradyne coherent receiver includes
single-step digital backpropagation based on the enhanced-SSFM algorithm. In
comparison, conventional DBP requires twenty steps to achieve the same
performance. An analysis of the computational complexity and structure of the
two algorithms reveals that the overall complexity and power consumption of DBP
are reduced by a factor of 16 with respect to a conventional implementation,
while the computation time is reduced by a factor of 20. As a result, the
proposed algorithm enables a practical and effective implementation of DBP in
real-time optical receivers, with only a moderate increase of the computational
complexity, power consumption, and latency with respect to a simple
feed-forward equalizer for dispersion compensation.Comment: This work has been presented at Optical Networks Design & Modeling
(ONDM) 2015, Pisa, Italy, May 11-14, 201
Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration
Time-frequency packing (TFP) transmission provides the highest achievable
spectral efficiency with a constrained symbol alphabet and detector complexity.
In this work, the application of the TFP technique to fiber-optic systems is
investigated and experimentally demonstrated. The main theoretical aspects,
design guidelines, and implementation issues are discussed, focusing on those
aspects which are peculiar to TFP systems. In particular, adaptive compensation
of propagation impairments, matched filtering, and maximum a posteriori
probability detection are obtained by a combination of a butterfly equalizer
and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel
algorithm that ensures adaptive equalization, channel estimation, and a proper
distribution of tasks between the equalizer and BCJR detectors is proposed. A
set of irregular low-density parity-check codes with different rates is
designed to operate at low error rates and approach the spectral efficiency
limit achievable by TFP at different signal-to-noise ratios. An experimental
demonstration of the designed system is finally provided with five
dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz
bandwidth, employing a recirculating loop to test the performance of the system
at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal
of Lightwave Technolog
Response of captive seabass and seabream as behavioural indicator in aquaculture
Welfare of cultivate fish at high-density represents an important concern for modern aquaculture.
The behaviour of European seabass (Dicentrarchus labrax) and seabream (Sparus aurata) reared in cages was studied
in a fish farm of northern Sardinia (Italy) in autumn 2006 to test whether captive condition had an effect on
the movement patterns of these two species.Video images recorded before, during and after the manual feeding distribution
allowed us to collect data on different behaviours of captive fish. Thus, behaviours indicating the position
of fish in the water column, swimming direction and possible aggressive behaviours (aggression, direction change
and collision) showed juveniles and adults of seabass and seabream were overall affected by feeding rhythms and
captive overcrowding. Seabream had a major tendency to swim towards the bottom and higher frequency of horizontal
swimming and collisions than seabass. The overall behavioural difference between two species was explained
in terms of their differences in ecological features in the wild
Photonic Combinatorial Network for Contention Management in 160 Gb/s Interconnection Networks based on All-Optical 2x2 Switching Elements
A modular photonic interconnection network based on a combination of basic 2Ă—2 all-optical nodes including a photonic combinatorial network for the packet contention management is presented. The proposed architecture is synchronous, can handle optical time division multiplexed (OTDM) packets up to 160 Gb/s, exhibits self-routing capability, and very low switching latency. In such a scenario, OTDM has to be preferred to wavelength division multiplexing (WDM) because in the former case, the instantaneous packet power carries the information related to only one bit, making the signal processing based on instantaneous nonlinear interactions between packets and control signals more efficient. Moreover, OTDM can be used in interconnection networks without caring about the propagation impairments because of the very short length (< 100 m) of the links in these networks. For such short-range networks, the packet synchronization can be solved at the network boundary in the electronic domain without the need of complex optical synchronizers. In this paper, we focus on a photonic combinatorial network able to detect the contentions, and to optically drive the contention resolution block and the switching control block. The implementation of the photonic combinatorial network is based on semiconductor devices, which makes the solution very promising in terms of compactness, stability, and power consumption. This implementation represents the first example of complex photonic combinatorial network for ultrafast digital processing. The network performance has been investigated for bit streams at 10 Gb/s in terms of bit error rate (BER) and contrast ratio. Moreover, the suitability of the 2Ă—2 photonic node architecture exploiting the earlier mentioned combinatorial network has been verified at a bit rate up to 160 Gb/s. In this way, the potential of photonic digital processing for the next generation broad band and flexible interconnection networks has been demonstrated
Blind Adaptive Chromatic Dispersion Compensation and Estimation for DSP-Based Coherent Optical Systems
We propose an accurate and low-complexity blind adaptive algorithm for chromatic dispersion (CD) compensation and estimation in coherent optical systems. The method is based on a Frequency Domain Equalizer (FDE), a low complexity Time Domain Equalizer arranged in a butterfly structure (B-TDE) and an Optical Performance Monitoring (OPM) block in a loop configuration. The loop is such that, at each iteration, the CD value compensated by the B-TDE and estimated by the OPM is given to the FDE; according to this estimation, in the subsequent iteration, the FDE compensates also this quantity. The procedure is repeated until the majority of CD is compensated by the FDE and a small residual quantity is compensated by a low complexity B-TDE with a small number of taps. The method is extended to long haul uncompensated links exploiting the information on the mean square error (MSE) provided by the B-TDE. The proposed algorithm is then experimentally validated for a polarization multiplexed quadrature phase shift keying (PM-QPSK) signal at 112 Gbit/s propagating along 1000 km of uncompensated Z PLUS® optical fiber. A statistical analysis of the performance of the proposed solution, in terms of mean value and standard deviation of the CD estimation error, is carried out, running a set of simulations including different impairments, such as noise, polarization dependent loss, polarization mode dispersion and self-phase modulation in a line of 1000 km of uncompensated G.652 optical fiber. Our method could be used to compensate and estimate any CD quantity without increasing the number of taps in the B-TDE and exploiting devices already included in the system (TDE, FDE and OPM) arranged in a loop
- …