16 research outputs found

    From implantation to birth: insight into molecular melatonin functions

    Get PDF
    Melatonin is a lipophilic hormone synthesized and secreted mainly in the pineal gland, acting as a neuroendocrine transducer of photoperiodic information during the night. In addition to this activity, melatonin has shown an antioxidant function and a key role as regulator of physiological processes related to human reproduction. Melatonin is involved in the normal outcome of pregnancy, beginning with the oocyte quality, continuing with embryo implantation, and finishing with fetal development and parturition. Melatonin has been shown to act directly on several reproductive events, including folliculogenesis, oocyte maturation, and corpus luteum (CL) formation. The molecular mechanism of action has been investigated through several studies which provide solid evidence on the connections between maternal melatonin secretion and embryonic and fetal development. Melatonin administration, reducing oxidative stress and directly acting on its membrane receptors, melatonin thyroid hormone receptors (MT1 and MT2), displays effects on the earliest phases of pregnancy and during the whole gestational period. In addition, considering the reported positive effects on the outcomes of compromised pregnancies, melatonin supplementation should be considered as an important tool for supporting fetal development, opening new opportunities for the management of several reproductive and gestational pathologies

    Soft gel capsules improve melatonin's bioavailability in humans.

    No full text
    Objective: Oral bioavailability is one of the most important properties in drug design and development. A poor oral bioavailability can result in low efficacy and unpredictable response to a drug. Several dosages of melatonin have been used for various investigations to clarify its bioavailability in humans. Aiming to search for a pharmaceutical form, which is better absorbed, the pharmacokinetic (PK) profile of the new manufactured melatonin soft gelatin (soft gel) capsule form has been evaluated and compared with the commercially available melatonin powder. Research design and methods: A total of 60 healthy volunteers received 1, 3 mg of melatonin powder and 1 mg of melatonin in soft gel capsules. PK profiles were obtained by analysis of melatonin plasma concentration, and the respective melatonin bioavailability was compared. Results: Melatonin soft gel capsule form showed similar PK parameters compared with the highest doses of melatonin in powder form, but its bioavailability was improved. Conclusions: Soft gel capsules improved the bioavailability of melatonin in humans even when administered dose was reduced. Considering the number of conditions in which melatonin supplementation is recommended, this evidence could support a broader use of melatonin in clinical practice. © 2014 Informa UK, Ltd

    Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome

    No full text
    Polycystic ovarian syndrome (PCOS) induces anovulation in women of reproductive age, and is one of the pathological factors involved in the failure of in vitro fertilization (IVF). Indeed, PCOS women are characterized by poor quality oocytes. Therefore, a treatment for enhancing oocyte quality becomes crucial for these patients. Myo-Inositol and melatonin proved to be efficient predictors for positive IVF outcomes, correlating with high oocyte quality. We tested the synergistic effect of myo-inositol and melatonin in IVF protocols with PCOS patients in a randomized, controlled, double-blind trial. Five-hundred twenty-six PCOS women were divided into three groups: Controls (only folic acid: 400 mcg), Group A (Inofolic® plus, a daily dose of myo-inositol: 4000 mg, folic acid: 400 mcg, and melatonin: 3 mg), and Group B (Inofolic®, a daily dose of myo-inositol: 4000 mg, and folic acid: 400 mcg). The main outcome measures were oocyte and embryo quality, clinical pregnancy and implantation rates. The treatment lasted from the first day of the cycle until 14 days after embryo transfer. Myo-inositol and melatonin have shown to enhance, synergistically, oocyte and embryo quality. In consideration of the beneficial effect observed in our trial and on the bases of previous studies, we decided to integrate routinely MI and M supplementation in the IVF protocols. The same treatment should be taken carefully in consideration in all procedures of this kin

    Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance

    No full text
    Background: Insulin resistance plays a key role in the pathogenesis of polycystic ovarian syndrome (PCOS). One of the methods for correcting insulin resistance is using myo-inositol. Aim: The aim of the present study is to evaluate the effectiveness of myo-inositol alone or in combination with clomiphene citrate for (1) induction of ovulation and (2) pregnancy rate in anovulatory women with PCOS and proven insulin resistance. Patients and methods: This study included 50 anovulatory PCOS patients with insulin resistance. All of them received myo-inositolduring three spontaneous cycles. If patients remained anovulatory and/or no pregnancy was achieved, combination of myo-inositol and clomiphene citrate was used in the next three cycles. Ovulation and pregnancy rate, changes in body mass index (BMI) and homeostatic model assessment (HOMA) index and the rate of adverse events were assessed. Results: After myo-inositol treatment, ovulation was present in 29 women (61.7%) and 18 (38.3%) were resistant. Of the ovulatory women, 11 became pregnant (37.9%). Of the 18 myo-inositol resistant patients after clomiphene treatment, 13 (72.2%) ovulated. Of the 13 ovulatory women, 6 (42.6%) became pregnant. During follow-up, a reduction of body mass index and HOMA index was also observed. Conclusion: Myo-inositol treatment ameliorates insulin resistance and body weight, and improves ovarian activity in PCOS patients

    Improvement of mouse embryo quality by myo-inositol supplementation of IVF media

    No full text
    Myo-inositol (myoIns) has a positive role in mammalian development and human reproduction. Since experiments on farming species suggest a similar role in preimplantation development, we evaluated the hypothesis that the inclusion of myoIns in human embryo culture media would produce an increase in embryo quality in IVF cycles, using the mouse embryo assay. To determine the effect of myoIns on completion of preimplantation development in vitro, one-cell embryos of the inbred C57BL/6N mouse strain were produced by ICSI, cultured in human fertilization media in the presence of myoIns (myoIns+) or in its absence (myoIns-) and evaluated morphologically. Daily progression through cleavage stages, blastocyst production and expansion and blastomere number at 96 hours post fertilization were assessed. Compared to myoIns- embryos, myoIns+ embryos displayed a faster cleavage rate and by the end of preimplantation development, the majority of myoIns+ blastocysts was expanded and formed by a higher number of blastomeres. The presence of myoIns resulted in both an increase in proliferation activity and developmental rate of in vitro cultured early mouse embryos, representing a substantial improvement of culture conditions. These data may identify myoIns as an important supplement for human embryo preimplantation culture

    The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome.

    No full text
    PCOS is one of the most common endocrine disorders affecting women and it is characterized by a combination of hyper-androgenism, chronic anovulation, and insulin resistance. While a significant progress has recently been made in the diagnosis for PCOS, the optimal infertility treatment remains to be determined. Two inositol isomers, myo-inositol (MI) and D-chiro-inositol (DCI) have been proven to be effective in PCOS treatment, by improving insulin resistance, serum androgen levels and many features of the metabolic syndrome. However, DCI alone, mostly when it is administered at high dosage, negatively affects oocyte quality, whereas the association MI/DCI, in a combination reproducing the plasma physiological ratio (40:1), represents a promising alternative in achieving better clinical results, by counteracting PCOS at both systemic and ovary level. © 2014, The American College of Clinical Pharmacology

    Mice overexpressing the mitochondrial phospholipid hydroperoxide glutathione peroxidase in male germ cells show abnormal spermatogenesis and reduced fertility

    No full text
    To investigate the physiological effects of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) overexpression during early male germ cell differentiation, we have generated transgenic mice bearing the rat mPhgpx coding sequence driven by the mouse synaptonemal complex protein 1 promoter, allowing the transgene to be specifically activated in the testis from the zygotene to diplotene stages of the first meiotic division. Northern/Western blotting and immunocytochemical analyses of endogenous mPHGPx expression during spermatogenesis showed a low enzyme level in middle-late pachytene spermatocytes, but not in earlier meiotic stages, and a significant increase in mPHGPx content in round spermatids. The histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis of transgenic testes revealed a number of spermatogenetic defects, including primary spermatocyte apoptosis, haploid cell loss, and seminiferous epithelium disorganization. In line with these features, adult transgenic male mice also displayed a reduction in fertility. Results obtained in this study suggest that mPHGPx expression is tightly regulated in pachytene spermatocytes, with any spatial-temporal increase in mPHGPx expression resulting in damage to spermatogenesis and eventual loss of haploid cells. Present findings in the mouse may be of interest to human male fertility. Copyright © 2007 by The Endocrine Society

    BMP4-Induced Differentiation of a Rat Spermatogonial Stem Cell Line Causes Changes in Its Cell Adhesion Properties

    No full text
    Spermatogonial stem cells (SSCs) are at the basis of the spermatogenic process and are essential for the continuous lifelong production of spermatozoa. Although several factors that govern SSC self-renewal and differentiation have been investigated, the direct effect of such factors on SSCs has not yet been studied, mainly because of the absence of markers to identify SSCs and the lack of effective methods to obtain and culture a pure population of SSCs. We now have used a previously established rat SSC cell line (GC-6spg) to elucidate the role of BMP4 in SSC differentiation. We found that GC-6spg cells cultured in the presence of BMP4 upregulate KIT expression, which is an early marker for differentiating spermatogonia. GC-6spg cells were found to express three BMP4 receptors and the downstream SMAD1/5/8 proteins were phosphorylated during BMP4-induced differentiation. A time-course DNA micro-array analysis revealed a total of 529 differentially regulated transcripts (>= 2-fold), including several known downstream targets of BMP4 such as Id2 and Gata2. Pathway analysis revealed that the most affected pathways were those involved in adherens junctions, focal junctions, gap junctions, cell adhesion molecules, and regulation of actin cytoskeleton. Interestingly, among the genes belonging to the most strongly affected adhesion pathways was Cdh1 (known as E-cadherin), an adhesion molecule known to be expressed by a subpopulation of spermatogonia including SSCs. Overall, our results suggest that BMP4 induces early differentiation of SSCs in a direct manner by affecting cell adhesion pathway
    corecore