1 research outputs found

    Asymptotics for the number of eigenvalues of three-particle Schr\"{o}dinger operators on lattices

    Full text link
    We consider the Hamiltonian of a system of three quantum mechanical particles (two identical fermions and boson)on the three-dimensional lattice Z3\Z^3 and interacting by means of zero-range attractive potentials. We describe the location and structure of the essential spectrum of the three-particle discrete Schr\"{o}dinger operator Hγ(K),H_{\gamma}(K), KK being the total quasi-momentum and γ>0\gamma>0 the ratio of the mass of fermion and boson. We choose for γ>0\gamma>0 the interaction v(γ)v(\gamma) in such a way the system consisting of one fermion and one boson has a zero energy resonance. We prove for any γ>0\gamma> 0 the existence infinitely many eigenvalues of the operator Hγ(0).H_{\gamma}(0). We establish for the number N(0,γ;z;)N(0,\gamma; z;) of eigenvalues lying below z<0z<0 the following asymptotics limz0N(0,γ;z)logz=U(γ). \lim_{z\to 0-}\frac{N(0,\gamma;z)}{\mid \log \mid z\mid \mid}={U} (\gamma) . Moreover, for all nonzero values of the quasi-momentum KT3K \in T^3 we establish the finiteness of the number N(K,γ;τess(K)) N(K,\gamma;\tau_{ess}(K)) of eigenvalues of H(K)H(K) below the bottom of the essential spectrum and we give an asymptotics for the number N(K,γ;0)N(K,\gamma;0) of eigenvalues below zero.Comment: 25 page
    corecore