8 research outputs found

    The orphan nuclear receptor COUP-TFII coordinates hypoxia-independent proangiogenic responses in hepatic stellate cells

    Get PDF
    BACKGROUND & AIMS: Hepatic stellate cell (HSC) transdifferentiation into collagen-producing myofibroblasts is a key event in hepatic fibrogenesis, but the transcriptional network that controls the acquisition of the activated phenotype is still poorly understood. In this study, we explored whether the nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is involved in HSC activation and in the multifunctional role of these cells during the response to liver injury. METHODS: COUP-TFII expression was evaluated in normal and cirrhotic livers by immunohistochemistry and Western blot. The role of COUP-TFII in HSC was assessed by gain and loss of function transfection experiments and by generation of mice with COUP-TFII deletion in HSC. Molecular changes were determined by gene expression microarray and RT-qPCR. RESULTS: We showed that COUP-TFII is highly expressed in human fibrotic liver and in mouse models of hepatic injury. COUP-TFII expression rapidly increased upon HSC activation and it was associated with the regulation of genes involved in cell motility, proliferation and angiogenesis. Inactivation of COUP-TFII impairs proliferation and invasiveness in activated HSC and COUP-TFII deletion in mice abrogate HSC activation and angiogenesis. Finally, co-culture experiments with HSC and liver sinusoidal endothelial cells (SEC) showed that COUP-TFII expression in HSC influenced SEC migration and tubulogenesis via a hypoxia-independent and nuclear factor κB-dependent mechanism. CONCLUSION: This study elucidates a novel transcriptional pathway in HSC that is involved in the acquisition of the proangiogenic phenotype and regulates the paracrine signals between HSC and SEC during hepatic wound healing. LAY SUMMARY: In this study, we identified an important regulator of HSC pathobiology. We showed that the orphan receptor COUP-TFII is an important player in hepatic neoangiogenesis. COUP-TFII expression in HSC controls the crosstalk between HSC and endothelial cells coordinating vascular remodelling during liver injury. TRANSCRIPT PROFILING: ArrayExpress accession E-MTAB-1795

    Effects of Probiotics Administration on Human Metabolic Phenotype

    Get PDF
    The establishment of the beneficial interactions between the host and its microbiota is essential for the correct functioning of the organism, since microflora alterations can lead to many diseases. Probiotics improve balanced microbial communities, exerting substantial healthpromoting effects. Here we monitored the molecular outcomes, obtained by gut microflora modulation through probiotic treatment, on human urine and serum metabolic profiles, with a metabolomic approach. Twenty-two subjects were enrolled in the study and administered with two different probiotic types, both singularly and in combination, for 8 weeks. Urine and serum samples were collected before and during the supplementation and were analyzed by nuclear magnetic resonance (NMR) spectroscopy and statistical analyses. After eight weeks of treatment, probiotics deeply influence the urinary metabolic profiles of the volunteers, without significantly altering their single phenotypes. Anyway, bacteria supplementation tends to reduce the differences in metabolic phenotypes among individuals. Overall, the effects are recipient-dependent, and in some individuals, robust effects are already well visible after four weeks. Modifications in metabolite levels, attributable to each type of probiotic administration, were also monitored. Metabolomic analysis of biofluids turns out to be a powerful technique to monitor the dynamic interactions between the microflora and the host, and the individual response to probiotic assumption

    Hyponatremia and Cancer: From Bedside to Benchside

    No full text
    Hyponatremia is the most common electrolyte disorder encountered in hospitalized patients. This applies also to cancer patients. Multiple causes can lead to hyponatremia, but most frequently this electrolyte disorder is due to the syndrome of inappropriate antidiuresis. In cancer patients, this syndrome is mostly secondary to ectopic secretion of arginine vasopressin by tumoral cells. In addition, several chemotherapeutic drugs induce the release of arginine vasopressin by the hypothalamus. There is evidence that hyponatremia is associated to a more negative outcome in several pathologies, including cancer. Many studies have demonstrated that in different cancer types, both progression-free survival and overall survival are negatively affected by hyponatremia, whereas the correction of serum [Na+] has a positive effect on patient outcome. In vitro studies have shown that cells grown in low [Na+] have a greater proliferation rate and motility, due to a dysregulation in intracellular signalling pathways. Noteworthy, vasopressin receptors antagonists, which were approved more than a decade ago for the treatment of euvolemic and hypervolemic hyponatremia, have shown unexpected antiproliferative effects. Because of this property, vaptans were also approved for the treatment of polycystic kidney disease. In vitro evidence indicated that this family of drugs effectively counteracts proliferation and invasivity of cancer cells, thus possibly opening a new scenario among the pharmacological strategies to treat cancer

    Telomerase activated thymidine analogue pro-drug is a new molecule targeting hepatocellular carcinoma

    Get PDF
    Background & AimsHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although hepatectomy and transplantation have significantly improved survival, there is no effective chemotherapeutic treatment for HCC and its prognosis remains poor. Sustained activation of telomerase is essential for the growth and progression of HCC, suggesting that telomerase is a rational target for HCC therapy. Therefore, we developed a thymidine analogue pro-drug, acycloguanosyl-5′-thymidyltriphosphate (ACV-TP-T), which is specifically activated by telomerase in HCC cells and investigated its anti-tumour efficacy.MethodsFirst, we verified in vitro whether ACV-TP-T was a telomerase substrate. Second, we evaluated proliferation and apoptosis in murine (Hepa1-6) and human (Hep3B, HuH7, HepG2) hepatic cancer cells treated with ACV-TP-T. Next, we tested the in vivo treatment efficacy in HBV transgenic mice that spontaneously develop hepatic tumours, and in a syngeneic orthotopic murine model where HCC cells were implanted directly in the liver.ResultsIn vitro characterization provided direct evidence that the pro-drug was actively metabolized in liver cancer cells by telomerase to release the active form of acyclovir. Alterations in cell cycle and apoptosis were observed following in vitro treatment with ACV-TP-T. In the transgenic and orthotopic mouse models, treatment with ACV-TP-T reduced tumour growth, increased apoptosis, and reduced the proliferation of tumour cells.ConclusionsACV-TP-T is activated by telomerase in HCC cells and releases active acyclovir that reduces proliferation and induces apoptosis in human and murine liver cancer cells. This pro-drug holds a great promise for the treatment of HCC
    corecore