87 research outputs found

    Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture

    Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases.

    Get PDF
    Since extracellular vesicles (EVs) were discovered in 1983 in sheep reticulocytes samples, they have gradually attracted scientific attention and become a topic of great interest in the life sciences field. EVs are small membrane particles, released by virtually every cell that carries a variety of functional molecules. Their main function is to deliver messages to the surrounding area in both physiological and pathological conditions. Initially, they were thought to be either cell debris, signs of cell death, or unspecific structures. However, accumulating evidence support a theory that EVs are a universal mechanism of communication. Thanks to their biological characteristics and functions, EVs are likely to represent a promising strategy for obtaining pathogen information, identifying therapeutic targets and selecting specific biomarkers for a variety of diseases, such as autoimmune diseases. In this review, we provide a brief overview of recent progress in the study of the biology and functions of EVs. We also discuss their roles in diagnosis and therapy, with particular emphasis on autoimmune diseases

    IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression

    Full text link
    IL-27 and IL-35 are heterodimeric cytokines, members of the IL-12 family and considered to have immunomodulatory properties. Their role during neuroinflammation had been investigated using mutant mice devoid of either one of their subunits or lacking components of their receptors, yielding conflicting results. We sought to understand the therapeutic potential of IL-27 and IL-35 delivered by gene therapy in neuroinflammation. We constructed lentiviral vectors expressing IL-27 and IL-35 from a single polypeptide chain, and we validated in vitro their biological activity. We injected IL-27 and IL-35-expressing lentiviral vectors into the cerebrospinal fluid (CSF) of mice affected by experimental neuroinflammation (EAE), and performed clinical, neuropathological and immunological analyses. Both cytokines interfere with neuroinflammation, but only IL-27 significantly modulates disease development, both clinically and neuropathologically. IL-27 protects from autoimmune inflammation by inhibiting granulocyte macrophages colony-stimulating factor (GM-CSF) expression in CD4+ T cells and by inducing program death-ligand 1 (PD-L1) expression in both CNS-resident and CNS-infiltrating myeloid cells. We demonstrate here that IL-27 holds therapeutic potential during neuroinflammation and that IL-27 inhibits GM-CSF and induces pd-l1 mRNA in vivo

    CRISPR-mediated rapid generation of neural cell-specific knockout mice facilitates research in neurophysiology and pathology.

    Get PDF
    Inducible conditional knockout mice are important tools for studying gene function and disease therapy, but their generation is costly and time-consuming. We introduced clustered regularly interspaced short palindromic repeats (CRISPR) and Cre into an LSL-Cas9 transgene-carrying mouse line by using adeno-associated virus (AAV)-PHP.eB to rapidly knockout gene(s) specifically in central nervous system (CNS) cells of adult mice. NeuN in neurons and GFAP in astrocytes were knocked out 2 weeks after an intravenous injection of vector, with an efficiency comparable to that of inducible Cre-loxP conditional knockout. For functional testing, we generated astrocyte-specific Act1 knockout mice, which exhibited a phenotype similar to mice with Cre-loxP-mediated Act1 knockout, in an animal model of multiple sclerosis (MS), an autoimmune disorder of the CNS. With this novel technique, neural cell-specific knockout can be induced rapidly (few weeks) and cost-effectively. Our study provides a new approach to building inducible conditional knockout mice, which would greatly facilitate research on CNS biology and disease

    The diagnostic accuracy of carbon monoxide pulse oximetry in adults with suspected acute carbon monoxide poisoning: a systematic review and meta-analysis

    Get PDF
    IntroductionAcute carbon monoxide poisoning (COP) is one of the leading causes of intoxication among patients presenting to the emergency department (ED). COP symptoms are not always specific and may vary from mild to critical. In the last few years, COHb pulse oximeters have been developed and applied to the setting of suspected COP. The aim of this systematic review is to assess the diagnostic accuracy of CO pulse oximetry (SpCO) with carboxyhemoglobin (COHb) levels measured by blood gas analysis, used as a reference standard, in patients with suspected COP.MethodsWe developed our search strategy according to the PICOS framework, population, index/intervention, comparison, outcome, and study, considering the diagnostic accuracy of SpCO compared to COHb levels measured by blood gas analysis, used as a reference standard, in patients with suspected COP enrolled in cross-sectional studies in English. The search was performed on MEDLINE/PubMed and EMBASE in February 2022. Quality assessment was performed using the QUADAS-2 methodology. A COHb cutoff of 10% was chosen to test the sensitivity and specificity of the index test. A bivariate model was used to perform the meta-analysis. The protocol was registered on PROSPERO (CRD42022359144).ResultsA total of six studies (1734 patients) were included. The pooled sensitivity of the test was 0.65 (95% CI 0.44–0.81), and the pooled specificity was 0.93 (95% CI 0.83–0.98). The pooled LR+ was 9.4 (95% CI 4.4 to 20.1), and the pooled LR- was 0.38 (95% CI 0.24 to 0.62).ConclusionOur results show that SpCO cannot be used as a screening tool for COP in the ED due to its low sensitivity. Because of its high LR+, it would be interesting to evaluate, if SpCO could have a role in the prehospital setting as a tool to quickly identify COP patients and prioritize their transport to specialized hospitals on larger samples with a prospective design

    Determinants of long COVID among adults hospitalized for SARS-CoV-2 infection: A prospective cohort study

    Get PDF
    Rationale: Factors associated with long-term sequelae emerging after the acute phase of COVID-19 (so called "long COVID") are unclear. Here, we aimed to identify risk factors for the development of COVID-19 sequelae in a prospective cohort of subjects hospitalized for SARS-CoV-2 infection and followed up one year after discharge. Methods: A total of 324 subjects underwent a comprehensive and multidisciplinary evaluation one year after hospital discharge for COVID-19. A subgroup of 247/324 who consented to donate a blood sample were tested for a panel of circulating cytokines. Results: In 122 patients (37.8%) there was evidence of at least one persisting physical symptom. After correcting for comorbidities and COVID-19 severity, the risk of developing long COVID was lower in the 109 subjects admitted to the hospital in the third wave of the pandemic than in the 215 admitted during the first wave, (OR 0.69, 95%CI 0.51-0.93, p=0.01). Univariable analysis revealed female sex, diffusing capacity of the lungs for carbon monoxide (DLCO) value, body mass index, anxiety and depressive symptoms to be positively associated with COVID-19 sequelae at 1 year. Following logistic regression analysis, DLCO was the only independent predictor of residual symptoms (OR 0.98 CI 95% (0.96-0.99), p=0.01). In the subgroup of subjects with normal DLCO (> 80%), for whom residual lung damage was an unlikely explanation for long COVID, the presence of anxiety and depressive symptoms was significantly associated to persistent symptoms, together with increased levels of a set of pro-inflammatory cytokines: interferon-gamma, tumor necrosis factor-alpha, interleukin (IL)-2, IL-12, IL-1β, IL-17. In logistic regression analysis, depressive symptoms (p=0.02, OR 4.57 [1.21-17.21]) and IL-12 levels (p=0.03, OR 1.06 [1.00-1.11]) 1-year after hospital discharge were independently associated with persistence of symptoms. Conclusions: Long COVID appears mainly related to respiratory sequelae, prevalently observed during the first pandemic wave. Among patients with little or no residual lung damage, a cytokine pattern consistent with systemic inflammation is in place

    IFN-γ/IL-27 axis induces PD-L1 expression in monocyte-derived dendritic cells and restores immune tolerance in CNS autoimmunity

    Get PDF
    Antigen (Ag)-specific tolerance induction by intravenous (i.v.) injection of high-dose auto-Ags has been explored for therapy of autoimmune diseases, including multiple sclerosis (MS). It is thought that the advantage of such Ag-specific therapy over non-specific immunomodulatory treatments would be selective suppression of a pathogenic immune response without impairing systemic immunity, thus avoiding adverse effects of immunosuppression. Auto-Ag i.v. tolerance induction has been extensively studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and limited clinical trials demonstrated that it is safe and beneficial to a subset of MS patients. Nonetheless, mechanisms of i.v. tolerance induction are incompletely understood, hampering the development of better approaches and their clinical application. Here, we describe a pathway whereby auto-Ag i.v. injected into mice with ongoing clinical EAE induces IFN-γ secretion by auto-Ag-specific CD4+ T cells, triggering IL-27 production by conventional dendritic cells type 1 (cDC1). IL-27 then, via STAT3 activation, induces PD-L1 expression by monocyte-derived DCs (moDCs) in the CNS of mice with EAE. PD-L1 interaction with PD-1 on pathogenic CD4+ T cells leads to their apoptosis/anergy, resulting in disease amelioration. These findings identify a key role of the IFN-γ/IL-27/PD-L1 axis, involving T cells/cDC1/moDCs in the induction of i.v. tolerance

    CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation

    Get PDF
    SignificanceMultiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases characterized by accumulation of myeloid cells in the central nervous system (CNS). Both harmful and beneficial myeloid cells are present in EAE/MS, and a goal of MS therapy is to preferentially remove harmful myeloid cells. The receptor for CSF-1 (CSF-1R) is found on myeloid cells and is important for their survival. CSF-1R can bind two ligands, CSF-1 and IL-34, but it is not known whether their functions in EAE/MS differ. We found that blocking CSF-1 depleted only harmful myeloid cells in the CNS and suppressed EAE, whereas blocking IL-34 had no effect. Thus, we propose that blocking CSF-1 could be a therapy for MS

    Reduced Rate of Hospital Admissions for ACS during Covid-19 Outbreak in Northern Italy

    Get PDF
    To address the coronavirus (Covid-19) pandemic,1 strict social containment measures have been adopted worldwide, and health care systems have been reorganized to cope with the enormous increase in the numbers of acutely ill patients.2,3 During this same period, some changes in the pattern of hospital admissions for other conditions have been noted. The aim of the present analysis is to investigate the rate of hospital admissions for acute coronary syndrome (ACS) during the early days of the Covid-19 outbreak
    corecore