6,734 research outputs found
Density of states in an optical speckle potential
We study the single particle density of states of a one-dimensional speckle
potential, which is correlated and non-Gaussian. We consider both the repulsive
and the attractive cases. The system is controlled by a single dimensionless
parameter determined by the mass of the particle, the correlation length and
the average intensity of the field. Depending on the value of this parameter,
the system exhibits different regimes, characterized by the localization
properties of the eigenfunctions. We calculate the corresponding density of
states using the statistical properties of the speckle potential. We find good
agreement with the results of numerical simulations.Comment: 11 pages, 11 figures, revtex
Entropy potential and Lyapunov exponents
According to a previous conjecture, spatial and temporal Lyapunov exponents
of chaotic extended systems can be obtained from derivatives of a suitable
function: the entropy potential. The validity and the consequences of this
hypothesis are explored in detail. The numerical investigation of a
continuous-time model provides a further confirmation to the existence of the
entropy potential. Furthermore, it is shown that the knowledge of the entropy
potential allows determining also Lyapunov spectra in general reference frames
where the time-like and space-like axes point along generic directions in the
space-time plane. Finally, the existence of an entropy potential implies that
the integrated density of positive exponents (Kolmogorov-Sinai entropy) is
independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO
Solar panels as air Cherenkov detectors for extremely high energy cosmic rays
Increasing interest towards the observation of the highest energy cosmic rays
has motivated the development of new detection techniques. The properties of
the Cherenkov photon pulse emitted in the atmosphere by these very rare
particles indicate low-cost semiconductor detectors as good candidates for
their optical read-out.
The aim of this paper is to evaluate the viability of solar panels for this
purpose. The experimental framework resulting from measurements performed with
suitably-designed solar cells and large conventional photovoltaic areas is
presented.
A discussion on the obtained and achievable sensitivities follows.Comment: 6 pages, 8 eps figures included with epsfig, uses espcrc2.sty. Talk
given at the Sixth Topical Seminar on Neutrino and Astroparticle Physics, San
Miniato, Italy, 17-21 May 199
u-RANIA: a neutron detector based on \mu -RWELL technology
In the framework of the ATTRACT-uRANIA project, funded by the European
Community, we are developing an innovative neutron imaging detector based on
micro-Resistive WELL ( -RWELL) technology. The -RWELL, based on the
resistive detector concept, ensuring an efficient spark quenching mechanism, is
a highly reliable device. It is composed by two main elements: a readout-PCB
and a cathode. The amplification stage for this device is embedded in the
readout board through a resistive layer realized by means of an industrial
process with DLC (Diamond-Like Carbon). A thin layer of BC on the copper
surface of the cathode allows the thermal neutrons detection through the
release of Li and particles in the active volume. This technology
has been developed to be an efficient and convenient alternative to the He
shortage. The goal of the project is to prove the feasibility of such a novel
neutron detector by developing and testing small planar prototypes with readout
boards suitably segmented with strip or pad read out, equipped with existing
electronics or readout in current mode. Preliminary results from the test with
different prototypes, showing a good agreement with the simulation, will be
presented together with construction details of the prototypes and the future
steps of the project.Comment: Prepared for the INSTR20 Conference Proceeding for JINS
Search for Intermediate Mass Magnetic Monopoles and Nuclearites with the SLIM experiment
SLIM is a large area experiment (440 m2) installed at the Chacaltaya cosmic
ray laboratory since 2001, and about 100 m2 at Koksil, Himalaya, since 2003. It
is devoted to the search for intermediate mass magnetic monopoles (107-1013
GeV/c2) and nuclearites in the cosmic radiation using stacks of CR39 and
Makrofol nuclear track detectors. In four years of operation it will reach a
sensitivity to a flux of about 10-15 cm-2 s-1 sr-1. We present the results of
the calibration of CR39 and Makrofol and the analysis of a first sample of the
exposed detector.Comment: Presented at the 22nd ICNTS, Barcelona 200
Middle to late Holocene environmental evolution of the Pisa coastal plain (Tuscany, Italy) and early human settlements
A cross-disciplinary (sedimentological, geochemical, micropalaeontological and archaeological) examination of 12 continuous cores, up to 20m long, integrated with stratigraphical, geomorphological and historical investigations, allows for reliable delineation of the middle-late Holocene environmental evolution in the Pisa old town area, with special emphasis on the Etruscan age transition. Depositional facies were identified through integration of sedimentological and micropalaeontological (benthic foraminifers, ostracods, phytoclasts and palynomorphs) data, while sediment dispersal patterns were reconstructed on the basis of geochemical analyses. Facies architecture was chronologically constrained by combined archaeological and radiocarbon dating. The turnaround from early Holocene, transgressive conditions to the ensuing (middle-late Holocene) phase of sea-level highstand is witnessed by a prominent shallowing-upward succession of lagoonal, paludal and then poorly drained floodplain deposits supplied by two river systems (Arno and Serchio). This 'regressive' trend, reflecting coastal progradation under nearly stable sea-level conditions, was interrupted by widespread swamp development close to the Iron-Etruscan age transition. The expansion of vast, low-lying paludal areas across the alluvial plain was mostly induced by the intricate, short-term evolution of the meandering Arno and Serchio river systems. These changes in the fluvial network, which occurred during a period of variable climate conditions, strongly influenced the early Etruscan culture (7th-5th century BC) in terms of human settlement and society behaviour. Conversely, a strong impact of human frequentation on depositional environments is observed at the transition to the Roman age (from the 1st century BC onwards), when the wetlands were drained and the modern alluvial plain started to form. The palaeoenvironmental reconstruction fits in with the original geographical descriptions mentioned in Strabo's Chronicles, and provides chronologically constrained data of fluvial evolution from the Pisa old town area. © 2013 Elsevier Ltd and INQUA
Search for massive rare particles with the SLIM experiment
The search for magnetic monopoles in the cosmic radiation remains one of the
main aims of non-accelerator particle astrophysics. Experiments at high
altitude allow lower mass thresholds with respect to detectors at sea level or
underground. The SLIM experiment is a large array of nuclear track detectors at
the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The results from the
analysis of 171 m exposed for more than 3.5 y are here reported. The
completion of the analysis of the whole detector will allow to set the lowest
flux upper limit for Magnetic Monopoles in the mass range 10 - 10
GeV. The experiment is also sensitive to SQM nuggets and Q-balls, which are
possible Dark Matter candidates.Comment: Presented at the 29-th ICRC, Pune, India (2005
Vitamin B supplementation and nutritional intake of methyl donors in patients with chronic kidney disease: A critical review of the impact on epigenetic machinery
Cardiovascular morbidity and mortality are several-fold higher in patients with advanced chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general population. Hyperhomocysteinemia has undoubtedly a central role in such a prominent cardiovascular burden. The levels of homocysteine are regulated by methyl donors (folate, methionine, choline, betaine), and cofactors (vitamin B6, vitamin B12,). Uremia-induced hyperhomocysteinemia has as its main targets DNA methyltransferases, and this leads to an altered epigenetic control of genes regulated through methylation. In renal patients, the epigenetic landscape is strictly correlated with the uremic phenotype and dependent on dietary intake of micronutrients, inflammation, gut microbiome, inflammatory status, oxidative stress, and lifestyle habits. All these factors are key contributors in methylome maintenance and in the modulation of gene transcription through DNA hypo-or hypermethylation in CKD. This is an overview of the epigenetic changes related to DNA methylation in patients with advanced CKD and ESRD. We explored the currently available data on the molecular dysregulations resulting from altered gene expression in uremia. Special attention was paid to the efficacy of B-vitamins supplementation and dietary intake of methyl donors on homocysteine lowering and cardiovascular protection
The effects of suppressing inflammation by tofacitinib may simultaneously improve glycaemic parameters and inflammatory markers in rheumatoid arthritis patients with comorbid type 2 diabetes: a proof-of-concept, open, prospective, clinical study
Background: A consistent connection has been increasingly reported between rheumatoid arthritis (RA), insulin resistance (IR), and type 2 diabetes (T2D). The ÎČ-cell apoptosis induced by pro-inflammatory cytokines, which could be exaggerated in the context of RA, is associated with increased expression pro-apoptotic proteins, which is dependent on JAnus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) activation. On these bases, we aimed to evaluate if the administration of tofacitinib, a potent and selective JAK inhibitor, could simultaneously improve glycaemic parameters and inflammatory markers in patients with RA and comorbid T2D. Methods: The primary endpoint was the change in the 1998-updated homeostatic model assessment of IR (HOMA2-IR) after 6 months of treatment with tofacitinib in RA patients with T2D. Consecutive RA patients with T2D diagnosis were included in this proof-of-concept, open, prospective, clinical study, which was planned before the recent emergence of safety signals about tofacitinib. Additional endpoints were also assessed regarding RA disease activity and metabolic parameters. Results: Forty consecutive RA patients with T2D were included (female sex 68.9%, mean age of 63.4 ± 9.9 years). During 6-month follow-up, a progressive reduction of HOMA2-IR was observed in RA patients with T2D treated with tofacitinib. Specifically, a significant effect of tofacitinib was shown on the overall reduction of HOMA2-IR (ÎČ = â 1.1, p = 0.019, 95%CI â 1.5 to â 0.76). Also, HOMA2-ÎČ enhanced in these patients highlighting an improvement of insulin sensitivity. Furthermore, although a longer follow-up is required, a trend in glycated haemoglobin reduction was also recorded. The administration of tofacitinib induced an improvement in RA disease activity, and a significant reduction of DAS28-CRP and SDAI was observed; 76.8% of patients achieved a good clinical response. In this study, no major adverse events (AEs) were retrieved without the identification of new safety signals. Specifically, no life-threatening AEs and cardiovascular and/or thromboembolic events were recorded. Conclusions: The administration of tofacitinib in RA with T2D led to a simultaneous improvement of IR and inflammatory disease activity, inducing a âbidirectionalâ benefit in these patients. However, further specific designed and powered studies are warranted to entirely evaluate the metabolic effects of tofacitinib in RA patients with T2D
- âŠ