452 research outputs found

    The Formation of Carbon Microcoils Having the Coil-Type Overall Geometry

    Get PDF
    Carbon microcoils could be synthesized using a thermal chemical vapor deposition process in which C2H2/H2 is used as the source gas and SF6 as an additive gas. We investigated the formation of carbon microcoils as a function of reaction time to study the growth mechanism of coil-type carbon microcoils, particularly under long reaction time. After the first 5 min of the reaction, wave-like carbon nanocoils were formed along with carbon microcoils at certain positions on the sample. An increase in reaction time (60 min) led to the formation of double helix-type carbon microcoils. Further increase in the reaction time (120 min) led to the formation of twist-type carbon microcoils with occasional growth of the coil-type carbon microcoils on the sample. However, at the longest reaction time (180 min) investigated in this work, we observed a decrease in the density of the carbon microcoils. Based on these results, we determine the optimal reaction time for the growth of double helix-type carbon microcoils and suggest the growth mechanism of the coil-type carbon microcoils with a focus on long reaction time

    Real-Time Detection of Nitric Oxide Release in Live Cells Utilizing Fluorinated Xerogel-Derived Nitric Oxide Sensor

    Get PDF
    Nitric oxide (NO) is an important signaling molecule that regulates a diverse range of physiological and cellular processes in many tissues. Therefore, the accurate detection of physiological NO concentration is crucial to the understanding of NO signaling and its biological role. There has been growing interest in the development of electrochemical sensors for direct and real-time monitoring of NO. As the direct electrooxidation of NO requires a relatively high working potential, further surface modification with permselective membranes is required to achieve the desired selectivity for NO via size exclusion or electrostatic repulsion. Here we reported a planar-type NO sensor with a fluorinated xerogel-derived gas permeable membrane for real-time detection of NO release in live cells. First, we evaluated the biocompatibility of xerogel-derived NO permeable membranes modified with fluorinated functional groups by growing RAW 264.7 macrophages on them. And we performed the AFM measurements to examine the morphology of RAW 264.7 macrophages on xerogel membrane. Finally, we successfully detected NO release in RAW 264.7 macrophages, using a planar-type xerogel-derived NO sensor. As a result, fluorinated xerogel-derived membrane could be utilized as both NO permeable and cell-adhesive membranes. Besides, planar-type xerogel-based NO sensors can be easily applied to the cellular sensing system, with a simple coating procedure

    A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography

    Get PDF
    Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding objectives.open0

    Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

    Get PDF
    AbstractThis article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to 627°C and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad

    Versatile poly(diallyl dimethyl ammonium chloride)-layered nanocomposites for removal of cesium in water purification

    Get PDF
    In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe3O4 nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m2/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination

    The Effect of Welding Residual Stress for Making Artificial Stress Corrosion Crack in the STS 304 Pipe

    Get PDF
    The stress corrosion crack is one of the fracture phenomena for the major structure components in nuclear power plant. During the operation of a power plant, stress corrosion cracks are initiated and grown especially in dissimilar weldment of primary loop components. In particular, stress corrosion crack usually occurs when the following three factors exist at the same time: susceptible material, corrosive environment, and tensile stress (residual stress included). Thus, residual stress becomes a critical factor for stress corrosion crack when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. In this study, stress corrosion cracks were artificially produced on STS 304 pipe itself by control of welding residual stress. We used the instrumented indentation technique and 3D FEM analysis (using ANSYS 12) to evaluate the residual stress values in the GTAW area. We used the custom-made device for fabricating the stress corrosion crack in the inner STS 304 pipe wall. As the result of both FEM analysis and experiment, the stress corrosion crack was quickly generated and could be reproduced, and it could be controlled by welding residual stress

    The Differential Effects of Acute Right- vs. Left-Sided Vestibular Deafferentation on Spatial Cognition in Unilateral Labyrinthectomized Mice

    Get PDF
    This study aimed to investigate the disparity in locomotor and spatial memory deficits caused by left- or right-sided unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL) and to examine the effects of galvanic vestibular stimulation (GVS) on the deficits over 14 days. Five experimental groups were established: the left-sided and right-sided UL (Lt.-UL and Rt.-UL) groups, left-sided and right-sided UL with bipolar GVS with the cathode on the lesion side (Lt.-GVS and Rt.-GVS) groups, and a control group with sham surgery. We assessed the locomotor and cognitive-behavioral functions using the open field (OF), Y maze, and Morris water maze (MWM) tests before (baseline) and 3, 7, and 14 days after surgical UL in each group. On postoperative day (POD) 3, locomotion and spatial working memory were more impaired in the Lt.-UL group compared with the Rt.-UL group (p < 0.01, Tamhane test). On POD 7, there was a substantial difference between the groups; the locomotion and spatial navigation of the Lt.-UL group recovered significantly more slowly compared with those of the Rt.-UL group. Although the differences in the short-term spatial cognition and motor coordination were resolved by POD 14, the long-term spatial navigation deficits assessed by the MWM were significantly worse in the Lt.-UL group compared with the Rt.-UL group. GVS intervention accelerated the vestibular compensation in both the Lt.-GVS and Rt.-GVS groups in terms of improvement of locomotion and spatial cognition. The current data imply that right- and left-sided UVD impair spatial cognition and locomotion differently and result in different compensatory patterns. Sequential bipolar GVS when the cathode (stimulating) was assigned to the lesion side accelerated recovery for UVD-induced spatial cognition, which may have implications for managing the patients with spatial cognitive impairment, especially that induced by unilateral peripheral vestibular damage on the dominant side

    Flora of Vascular Plants in Ridgelines in the Palgongsa Procincial Park, Korea

    Get PDF
    AbstractWe investigated and analyzed the flora of vascular plants around ridgelines in the Palgongsan Provincial Park to suggest fundamental data for establishing preservation plans of them. The flora of vascular plants around ridgelines was a total of 587 taxa including 102 familiies, 314 genera, 518 species, 58 varieties, 7 forma, and 4 subspecies. Rare plants designated by Korea Forest Service were 27 taxa including Semiquilegia mandshurica and Aristolochia manshuriensis. Endemic plants were 15 taxa including Clematis trichotoma and Carex okamotoi. Floristic special plants were a total of 100 taxa including all five classes. Naturalized plants were 13 taxa including Phytolacca Americana, ambrosia, and Taraxacum officinale

    A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors

    Get PDF
    Multimodal biometrics are promising for providing a strong security level for personal authentication, yet the implementation of a multimodal biometric system for practical usage need to meet such criteria that multimodal biometric signals should be easy to acquire but not easily compromised. We developed a wearable wrist band integrated with multispectral skin photomatrix (MSP) and electrocardiogram (ECG) sensors to improve the issues of collectability, performance and circumvention of multimodal biometric authentication. The band was designed to ensure collectability by sensing both MSP and ECG easily and to achieve high authentication performance with low computation, efficient memory usage, and relatively fast response. Acquisition of MSP and ECG using contact-based sensors could also prevent remote access to personal data. Personal authentication with multimodal biometrics using the integrated wearable wrist band was evaluated in 150 subjects and resulted in 0.2% equal error rate ( EER ) and 100% detection probability at 1% FAR (false acceptance rate) ( PD.1 ), which is comparable to other state-of-the-art multimodal biometrics. An additional investigation with a separate MSP sensor, which enhanced contact with the skin, along with ECG reached 0.1% EER and 100% PD.1 , showing a great potential of our in-house wearable band for practical applications. The results of this study demonstrate that our newly developed wearable wrist band may provide a reliable and easy-to-use multimodal biometric solution for personal authentication
    corecore