869 research outputs found

    Large amplitude problem of BGK model: Relaxation to quadratic nonlinearity

    Full text link
    Bhatnagar-Gross-Krook (BGK) equation is a relaxation model of the Boltzmann equation which is widely used in place of the Boltzmann equation for the simulation of various kinetic flow problems. In this work, we study the asymptotic stability of the BGK model when the initial data is not necessarily close to the global equilibrium pointwisely. Due to the highly nonlinear structure of the relaxation operator, the argument developed to derive the bootstrap estimate for the Boltzmann equation leads to a weaker estimate in the case of the BGK model, which does not exclude the possible blow-up of the perturbation. To overcome this issue, we carry out a refined analysis of the macroscopic fields to guarantee that the system transits from a highly nonlinear regime into a quadratic nonlinear regime after a long but finite time, in which the highly nonlinear perturbative term relaxes to essentially quadratic nonlinearity.Comment: 34 pages, 1 figure

    Features of Microsystems for Cultivation and Characterization of Stem Cells with the Aim of Regenerative Therapy

    Get PDF
    Stem cells have infinite potential for regenerative therapy thanks to their advantageous ability which is differentiable to requisite cell types for recovery and self-renewal. The microsystem has been proved to be more helpful to stem cell studies compared to the traditional methods, relying on its advantageous feature of mimicking in vivo cellular environments as well as other profitable features such as minimum sample consumption for analysis and multiprocedures. A wide variety of microsystems were developed for stem cell studies; however, regenerative therapy-targeted applications of microtechnology should be more emphasized and gain more attractions since the regenerative therapy is one of ultimate goals of biologists and bioengineers. In this review, we introduce stem cell researches harnessing well-known microtechniques (microwell, micropattern, and microfluidic channel) in view point of physical principles and how these systems and principles have been implemented appropriately for characterizing stem cells and finding possible regenerative therapies. Biologists may gain information on the principles of microsystems to apply them to find solutions for their current challenges, and engineers may understand limitations of the conventional microsystems and find new chances for further developing practical microsystems. Through the well combination of engineers and biologists, the regenerative therapy-targeted stem cell researches harnessing microtechnology will find better suitable treatments for human disorders

    Tetraarsenic Hexoxide Induces Beclin-1-Induced Autophagic Cell Death as well as Caspase-Dependent Apoptosis in U937 Human Leukemic Cells

    Get PDF
    Tetraarsenic hexaoxide (As4O6) has been used in Korean folk remedy for the treatment of cancer since the late 1980s, and arsenic trioxide (As2O3) is currently used as a chemotherapeutic agent. However, evidence suggests that As4O6-induced cell death pathway was different from that of As2O3. Besides, the anticancer effects and mechanisms of As4O6 are not fully understood. Therefore, we investigated the anticancer activities of As4O6 on apoptosis and autophagy in U937 human leukemic cells. The growth of U937 cells was inhibited by As4O6 treatment in a dose- and a time-dependent manner, and IC50 for As4O6 was less than 2 μM. As4O6 induced caspase-dependent apoptosis and Beclin-1-induced autophagy, both of which were significantly attenuated by Bcl-2 augmentation and N-acetylcysteine (NAC) treatment. This study suggests that As4O6 should induce Beclin-1-induced autophagic cell death as well as caspase-dependent apoptosis and that it might be a promising agent for the treatment of leukemia

    Versatile poly(diallyl dimethyl ammonium chloride)-layered nanocomposites for removal of cesium in water purification

    Get PDF
    In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe3O4 nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m2/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination

    Programming effects of maternal stress on the circadian system of adult offspring

    Get PDF
    Maternal stress has long-lasting influences on the brain functions of offspring, and several brain regions have been proposed to mediate such programming. Although perinatal programming of crosstalk between the circadian and stress systems has been proposed, the functional consequences of prenatal stress on the circadian system and the underlying mechanisms remain largely unknown. Therefore, we investigated whether exposing pregnant mice to chronic restraint stress had prolonged effects on the suprachiasmatic nucleus (SCN), which bears the central pacemaker for mammalian circadian rhythms, of offspring. SCN explants from maternally stressed mice exhibited altered cyclic expression patterns of a luciferase reporter under control of the mouse Per1 promoter (mPer1::LUC), which manifested as a decreased amplitude and impaired stability of the rhythm. Bioluminescence imaging at the single-cell level subsequently revealed that impaired synchrony among individual cells was responsible for the impaired rhythmicity. These intrinsic defects appeared to persist during adulthood. Adult male offspring from stressed mothers showed advanced-phase behavioral rhythms with impaired stability as well as altered clock gene expression in the SCN. In addition to affecting the central rhythm, maternal stress also had prolonged influences on the circadian characteristics of the adrenal gland and liver, as determined by circulating corticosterone levels and hepatic glycogen content, and on canonical clock gene mRNA expression in those tissues. Taken together, our findings suggest that the SCN is a key target of the programming effects of maternal stress. The widespread effects of circadian disruptions caused by a misprogrammed clock may have further impacts on metabolic and mental health in later life. © 2020, The Author(s).1

    Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform

    Get PDF
    2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

    Pulmonary nodular ground-glass opacities in patients with extrapulmonary cancers: what is their clinical significance and how can we determine whether they are malignant or benign lesions?

    Get PDF
    BACKGROUND: The clinical significance of pulmonary nodular ground-glass opacities (NGGOs) in patients with extrapulmonary cancers is not known, although there is an urgent need for study on this topic. The purpose of this study, therefore, was to investigate the clinical significance of pulmonary NGGOs in these patients, and to develop a computerized scheme to distinguish malignant from benign NGGOs. METHODS: Fifty-nine pathologically proven pulmonary NGGOs in 34 patients with a history of extrapulmonary cancer were studied. We reviewed the CT scan characteristics of NGGOs and the clinical features of these patients. Artificial neural networks (ANNs) were constructed and tested as a classifier distinguishing malignant from benign NGGOs. The performance of ANNs was evaluated with receiver operating characteristic analysis. RESULTS: Twenty-eight patients (82.4%) were determined to have malignancies. Forty NGGOs (67.8%) were diagnosed as malignancies (adenocarcinomas, 24; bronchioloalveolar carcinomas, 16). Among the rest of the NGGOs, 14 were atypical adenomatous hyperplasias, 4 were focal fibrosis, and 1 was an inflammatory nodule. There were no cases of metastasis appearing as NGGOs. Between malignant and benign NGGOs, there were significant differences in lesion size; the presence of internal solid portion; the size and proportion of the internal solid portion; the lesion margin; and the presence of bubble lucency, air bronchogram, or pleural retraction (p < 0.05). Using these characteristics, ANNs showed excellent accuracy (z value, 0.973) in discriminating malignant from benign NGGOs. CONCLUSIONS: Pulmonary NGGOs in patients with extrapulmonary cancers tend to have high malignancy rates and are very often primary lung cancers. ANNs might be a useful tool in distinguishing malignant from benign NGGOs
    corecore