3 research outputs found
Cost-Effective Single-Inverter-Controlled Brushless Technique for Wound Rotor Synchronous Machines
This paper proposes a cost-effective brushless technique for wound rotor synchronous machines (WRSMs). The proposed technique involves a traditional current-controlled voltage source inverter that utilizes a simple hysteresis-controller-based current control scheme and supplies three-phase currents to the armature winding of the machine. The supplied armature currents inherently contain fundamental-harmonic and third-harmonic current components. These unique armature current waveforms were previously realized by using dual-inverter-controlled schemes achieved with and without thyristor switches to develop brushless WRSM topologies. The fundamental-harmonic current component is applied to develop the main stator field, whereas the third-harmonic component is employed to realize the harmonic magnetomotive force, which induces a back electromotive force (EMF) in the harmonic winding located at the rotor periphery. The induced harmonic EMF is rectified to deliver a DC current to the rotor field winding through a full-bridge diode rectifier to achieve brushless operation. The proposed cost-effective brushless technique for WRSMs is validated using 2-D finite element analysis employing JMAG-Designer 19.1 to investigate the electromagnetic and electromechanical behaviors of the machine. Furthermore, the proposed technique is employed in machine topologies with different pole/slot combinations for the armature winding to achieve better performance
Brushless Field Excitation Scheme for Wound Field Synchronous Machines
A new harmonic field excitation technique for the brushless operation of wound field synchronous machines (WFSMs) is proposed in this paper. The proposed scheme involves conventional three-phase and single-phase inverters operating at different frequencies and supply input current to the armature winding simultaneously. This results in a composite output current of the inverters, which contains fundamental as well as the third harmonic current components. The fundamental is utilized to develop the stator field, on the other hand, the third harmonic is used for developing the pulsating magnetomotive force (MMF) in the airgap. This MMF produces a harmonic current in the harmonic winding of the rotor which is later rectified to inject field current to the rotor field winding. The theoretical analysis of the proposed technique is supported using 2-D finite element analysis (FEA)
Novel single inverter-controlled brushless wound field synchronous machine topology
This paper proposes a novel brushless excitation topology for a three-phase synchronous machine based on a customary current-controlled voltage source inverter (VSI). The inverter employs a simple hysteresis-controller-based current control scheme that enables it to inject a three-phase armature current to the stator winding which contains a dc offset. This dc offset generates an additional air gap magneto-motive force (MMF). On the rotor side, an additional harmonic winding is mounted to harness the harmonic power from the air gap flux. Since a third harmonic flux is generated in this type of topology, the machine structure is also modified to accommodate the third harmonic rotor winding to have a voltage induced as the rotor rotates at synchronous speed. Specifically, four-pole armature and field winding patterns are used, whereas the harmonic winding is configured for a twelve-pole pattern. A diode rectifier is also mounted on the rotor between the harmonic and field windings. Therefore, the generated voltage on the harmonic winding feeds the current to the field winding for excitation. A 2D-finite element analysis (FEA) in JMAG-Designer was carried out for performance evaluation and verification of the topology. The simulation results are consistent with the proposed theory. The topology could reduce the cost and stator winding volume compared to a conventional brushless machine, with good potential for various applications.National Research Foundation of Korea | Ref. 2016R1D1A1B01008058National Research Foundation of Korea | Ref. 2019H1D3A1A01102988Korea government Ministry of Trade, Industry and Energy | Ref. 2020403020009