24 research outputs found

    Development and validation of analytical methods for the simultaneous estimation of Nimorazole and Ofloxacin in tablet dosage form

    Get PDF
    Two simple, rapid, accurate and precise spectrophotometric methods have been developed for simultaneous estimation of Nimorazole and Ofloxacin from tablet dosage form. Method І involves formation of ‘simultaneous equations’ at 304 nm (λ max of Nimorazole) and 287.5 nm (λ max of Ofloxacin); while Method ІІ involves, formation of ‘Absorbance ratio equation’ at 301(isoabsorptive point) and 287.5 nm (λ max of Ofloxacin) using distilled water as a solvent. The linearity was observed in the concentration range of 5 - 25 μg/ml for Nimorazole and 2 - 10 μg/ml for Ofloxacin. The results of analysis have been validated statistically and by recovery studies and were found satisfactory

    Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery

    No full text
    Microgels based on poly(vinyl alcohol), PVA, grafted with methacrylate side chains, MA, incorporating N-isopropylacrylamide, NiPAAm, monomer, were prepared by water-in-water emulsion polymerization method. These systems exhibit a spherical shape and a volume-phase transition, that is, shrinking, below physiological temperature. The behavior of these microgels were studied with respect to their average size and size distribution, swelling, and release properties. It was observed that the stirring speed is a key parameter for controlling the amount of incorporated NiPAAm, the particle size and the sharpness of the volume-phase transition. The volume-phase transition temperature, VPPT, of the microgels was evaluated around 38 and 34 T for microgels with a NiPAAm/methacrylate molar ratio of 0.8 and 2.4, respectively. Water uptake increased with the amount of NiPAAm monomer present in the polymer network. In vitro biocompatibility of microgels was assessed with respect to NIH3T3 mouse fibroblasts. O-Succinoylated microgels were loaded with doxorubicin by exploiting the favorable electrostatic interaction between negatively charged microgel surface and positively charged doxorubicin. The drug release was influenced by the microgels surface/volume ratio. At physiological temperatures, above the VPTT exhibited by these systems, the release was enhanced by the specific area increase. This study provides the background for the design of an injectable device suitable for the controlled delivery of doxorubicin based on the volume-phase transition of microgels

    You have full text access to this contentMembrane filtration immobilization technique—a simple and novel method for primary isolation and enrichment of bacteriophages

    No full text
    Aim: To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Methods and Results: Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0�45 lm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. Conclusions: The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. Significance and Impact of the Study: The isolation and detection of hostspecific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively

    Membrane filtration immobilization technique—a simple and novel method for primary isolation and enrichment of bacteriophages

    No full text
    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Methods and Results: Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0�45 lm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. Conclusions: The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. Significance and Impact of the Study: The isolation and detection of hostspecific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectivel
    corecore