36,380 research outputs found

    An investigation of magnetic field distortions in accretion discs around neutron stars. I. Analysis of the poloidal field component

    Get PDF
    We report results from calculations investigating stationary magnetic field configurations in accretion discs around magnetised neutron stars. Our strategy is to start with a very simple model and then progressively improve it providing complementary insight into results obtained with large numerical simulations. In our first model, presented here, we work in the kinematic approximation and consider the stellar magnetic field as being a dipole aligned with the stellar rotation axis and perpendicular to the disc plane, while the flow in the disc is taken to be steady and axisymmetric. The behaviour in the radial direction is then independent of that in the azimuthal direction. We investigate the distortion of the field caused by interaction with the disc matter, solving the induction equation numerically in full 2D. The influence of turbulent diffusivity and fluid velocity on the poloidal field configuration is analysed, including discussion of outflows from the top and bottom of the disc. We find that the distortions increase with increasing magnetic Reynolds number R_m (calculated using the radial velocity). However, a single global parameter does not give an adequate description in different parts of the disc and we use instead a `magnetic distortion function' D_m(r,\theta) (a magnetic Reynolds number defined locally). Where D_m<<1 (near to the inner edge of the disc) there is little distortion, but where D_m>1 (most of the rest of the disc), there is considerable distortion and the field becomes weaker than the dipole would have been. Between these two regions, there is a transition zone where the field is amplified and can have a local minimum and maximum. The location of this zone depends sensitively on the diffusivity. The results depend very little on the boundary conditions at the top of the disc.Comment: Published in A&A; 10 pages and 8 figures; ver. 4: compactification of content

    Bulk asymptotics of skew-orthogonal polynomials for quartic double well potential and universality in the matrix model

    Full text link
    We derive bulk asymptotics of skew-orthogonal polynomials (sop) \pi^{\bt}_{m}, ÎČ=1\beta=1, 4, defined w.r.t. the weight exp⁥(−2NV(x))\exp(-2NV(x)), V(x)=gx4/4+tx2/2V (x)=gx^4/4+tx^2/2, g>0g>0 and t<0t<0. We assume that as m,N→∞m,N \to\infty there exists an Ï”>0\epsilon > 0, such that ϔ≀(m/N)≀λcr−ϔ\epsilon\leq (m/N)\leq \lambda_{\rm cr}-\epsilon, where λcr\lambda_{\rm cr} is the critical value which separates sop with two cuts from those with one cut. Simultaneously we derive asymptotics for the recursive coefficients of skew-orthogonal polynomials. The proof is based on obtaining a finite term recursion relation between sop and orthogonal polynomials (op) and using asymptotic results of op derived in \cite{bleher}. Finally, we apply these asymptotic results of sop and their recursion coefficients in the generalized Christoffel-Darboux formula (GCD) \cite{ghosh3} to obtain level densities and sine-kernels in the bulk of the spectrum for orthogonal and symplectic ensembles of random matrices.Comment: 6 page

    The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states

    Full text link
    We study entanglement properties of mixed density matrices obtained from combinatorial Laplacians. This is done by introducing the notion of the density matrix of a graph. We characterize the graphs with pure density matrices and show that the density matrix of a graph can be always written as a uniform mixture of pure density matrices of graphs. We consider the von Neumann entropy of these matrices and we characterize the graphs for which the minimum and maximum values are attained. We then discuss the problem of separability by pointing out that separability of density matrices of graphs does not always depend on the labelling of the vertices. We consider graphs with a tensor product structure and simple cases for which combinatorial properties are linked to the entanglement of the state. We calculate the concurrence of all graph on four vertices representing entangled states. It turns out that for some of these graphs the value of the concurrence is exactly fractional.Comment: 20 pages, 11 figure

    Role of Many-particle excitations in Coulomb Blockaded Transport

    Full text link
    We discuss the role of electron-electron and electron-phonon correlations in current flow in the Coulomb Blockade regime, focusing specifically on nontrivial signatures arising from the break-down of mean-field theory. By solving transport equations directly in Fock space, we show that electron-electron interactions manifest as gateable excitations experimentally observed in the current-voltage characteristic. While these excitations might merge into an incoherent sum that allows occasional simplifications, a clear separation of excitations into slow `traps' and fast `channels' can lead to further novelties such as negative differential resistance, hysteresis and random telegraph signals. Analogous novelties for electron-phonon correlation include the breakdown of commonly anticipated Stokes-antiStokes intensities, and an anomalous decrease in phonon population upon heating due to reabsorption of emitted phonons.Comment: 14 pages 10 figures, Invited article for the special issue on "Conductivity of single molecules and supramolecular architectures", IOP Journal of Physics Condensed matte

    Static potential in scalar QED3_3 with non-minimal coupling

    Get PDF
    Here we compute the static potential in scalar QED3QED_3 at leading order in 1/Nf1/N_f. We show that the addition of a non-minimal coupling of Pauli-type (\eps j^{\mu}\partial^{\nu}A^{\alpha}), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic (confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moš\ddot{o}ller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behavior of the potential turning it into constant.Comment: 13 pages, 3 figure

    Robust Foregrounds Removal for 21-cm Experiments

    Get PDF
    Direct detection of the Epoch of Reionization via the redshifted 21-cm line will have unprecedented implications on the study of structure formation in the early Universe. To fulfill this promise current and future 21-cm experiments will need to detect the weak 21-cm signal over foregrounds several order of magnitude greater. This requires accurate modeling of the galactic and extragalactic emission and of its contaminants due to instrument chromaticity, ionosphere and imperfect calibration. To solve for this complex modeling, we propose a new method based on Gaussian Process Regression (GPR) which is able to cleanly separate the cosmological signal from most of the foregrounds contaminants. We also propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere. Using this method, chromatic effects causing the so-called "wedge" are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊄,k∄k_{\perp}, k_{\parallel}) power spectrum.Comment: Subbmited to the Proceedings of the IAUS333, Peering Towards Cosmic Dawn, 4 pages, 2 figure

    Role of internal gases and creep of Ag in controlling the critical current density of Ag-sheathed Bi2Sr2CaCu2Ox wires

    Full text link
    High engineering critical current density JE of >500 A/mm2 at 20 T and 4.2 K can be regularly achieved in Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) round wire when the sample length is several centimeters. However, JE(20 T) in Bi-2212 wires of several meters length, as well as longer pieces wound in coils, rarely exceeds 200 A/mm2. Moreover, long-length wires often exhibit signs of Bi-2212 leakage after melt processing that are rarely found in short, open-end samples. We studied the length dependence of JE of state-of-the-art powder-in-tube (PIT) Bi-2212 wires and gases released by them during melt processing using mass spectroscopy, confirming that JE degradation with length is due to wire swelling produced by high internal gas pressures at elevated temperatures [1,2]. We further modeled the gas transport in Bi-2212 wires and examined the wire expansion at critical stages of the melt processing of as-drawn PIT wires and the wires that received a degassing treatment or a cold-densification treatment before melt processing. These investigations showed that internal gas pressure in long-length wires drives creep of the Ag sheath during the heat treatment, causing wire to expand, lowering the density of Bi-2212 filaments, and therefore degrading the wire JE; the creep rupture of silver sheath naturally leads to the leakage of Bi-2212 liquid. Our work shows that proper control of such creep is the key to preventing Bi-2212 leakage and achieving high JE in long-length Bi-2212 conductors and coils

    Planar Two-particle Coulomb Interaction: Classical and Quantum Aspects

    Get PDF
    The classical and quantum aspects of planar Coulomb interactions have been studied in detail. In the classical scenario, Action Angle Variables are introduced to handle relativistic corrections, in the scheme of time-independent perturbation theory. Complications arising due to the logarithmic nature of the potential are pointed out. In the quantum case, harmonic oscillator approximations are considered and effects of the perturbations on the excited (oscillator) states have been analysed. In both the above cases, the known 3+1-dimensional analysis is carried through side by side, for a comparison with the 2+1-dimensional (planar) results.Comment: LaTex, Figures on request, e-mail:<[email protected]
    • 

    corecore