1,402 research outputs found

    Coulomb interaction and ferroelectric instability of BaTiO3

    Full text link
    Using first-principles calculations, the phonon frequencies at the Γ\Gamma point and the dielectric tensor are determined and analysed for the cubic and rhombohedral phases of BaTiO3_{3}. The dipole-dipole interaction is then separated \`a la Cochran from the remaining short-range forces, in order to investigate their respective influence on lattice dynamics. This analysis highlights the delicate balance of forces leading to an unstable phonon in the cubic phase and demonstrates the extreme sensitivity of this close compensation to minute effective charge changes. Within our decomposition, the stabilization of the unstable mode in the rhombohedral phase or under isotropic pressure has a different origin.Comment: 9 pages, 4 tables, 1 figur

    First-principles study of PbTiO3_3 under uniaxial strains and stresses

    Get PDF
    The behavior of PbTiO3_3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespectively of the uniaxial mechanical constraint applied, the system keeps a purely ferroelectric ground-state, with the polarization aligned either along the constraint direction (FEzFE_z phase) or along one of the pseudo-cubic axis perpendicular to it (FExFE_x phase). This contrasts with the cases of isotropic or biaxial mechanical constraints for which novel phases combining ferroelectic and antiferrodistortive motions have been previously reported. Under uniaxial strain, PbTiO3_3 switched from a FExFE_x ground state under compressive strain to FEzFE_z ground-state under tensile strain, beyond a critical strain ηzzc≈+1\eta_{zz}^c \approx +1\%. Under uniaxial stress, PbTiO3_3 exhibits either a FExFE_x ground state under compression (σzz<0\sigma_{zz} < 0) or a FEzFE_z ground state under tension (σzz>0\sigma_{zz} > 0). Here, however, an abrupt jump of the structural parameters is also predicted under both compressive and tensile stresses at critical values σzz≈\sigma_{zz} \approx +2+2 GPa and −8- 8 GPa. This behavior appears similar to that predicted under negative isotropic pressure and might reveal practically useful to enhance the piezoelectric response in nanodevices.Comment: Submitted, 9 pages, 9 figure

    Electronic and thermoelectric properties of Fe2VAl: The role of defects and disorder

    Full text link
    Using first-principles calculations, we show that Fe2VAl is an indirect band gap semiconductor. Our calculations reveal that its, sometimes assigned, semimetallic character is not an intrinsic property but originates from the antisite defects and site disorder, which introduce localized ingap and resonant states changing the electronic properties close to band gap. These states negatively affect the thermopower S and power factor PF=S^2\sigma, decreasing the good thermoelectric performance of intrinsic Fe2VAl.Comment: 4 pages, 6 figures, thermoelectric properties, electronic structure and transport properties, effect of antisite defects and disorder on electronic and transport propertie

    Engineering multiferroism in CaMnO3_3

    Full text link
    From first-principles calculations, we investigate the structural instabilities of CaMnO3_3. We point out that, on top of a strong antiferrodistortive instability responsible for its orthorhombic ground-state, the cubic perovskite structure of CaMnO3_3 also exhibit a weak ferroelectric instability. Although ferroelectricity is suppressed by antiferrodistortive oxygen motions, we show that it can be favored using strain or chemical engineering in order to make CaMnO3_3 multiferroic. We finally highlight that the FE instability of CaMnO3_3 is Mn-dominated. This illustrates that, contrary to the common believe, ferroelectricity and magnetism are not necessarily exclusive but can be driven by the same cation

    Structurally Triggered Metal-Insulator Transition in Rare-Earth Nickelates

    Full text link
    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO3, they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural and magnetic properties. Here, we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the evolution of the metal-insulator transition in terms of the $R cations and rationalising how to tune this transition by acting on oxygen rotation motions.Comment: Submitted in Nature Communicatio

    First-principles study of lattice instabilities in Ba_xSr_(1-x)TiO_3

    Full text link
    Using first-principles calculations based on a variational density functional perturbation theory, we investigate the lattice dynamics of solid solutions of barium and strontium titanates. Averaging the information available for the related pure compounds yields results equivalent to those obtained within the virtual crystal approximation, providing frequencies which are a good approximation to those computed for a (111) ordered supercell. Using the same averaging technique we report the evolution of the ferroelectric and antiferrodistortive instabilities with composition.Comment: 9 pages, 2 figures, Proceedings for Fundamental Physics of Ferroelectrics, Aspen (CO), Feb. 13-20, 200

    Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through a polar distortion

    Full text link
    A pronounced uniform polar distortion extending over several unit cells enables thin LaAlO3 overlayers on SrTiO3(001) to counteract the charge dipole and thereby neutralize the "polarization catastrophe" that is suggested by simple ion-counting. This unanticipated mechanism, obtained from density functional theory calculations, allows several unit cells of the LaAlO3 overlayer to remain insulating (hence, fully ionic). The band gap of the system, defined by occupied O 2p2p states at the surface and unoccupied Ti 3d states at the interface in some cases ∼\sim20 \AA distant, decreases with increasing thickness of the LaAlO3-film before an insulator-to-metal transition and a crossover to an electronic reconstruction occurs at around five monolayers of LaAlO3.Comment: 5 pages, 4 figures, submitted for publicatio
    • …
    corecore