28 research outputs found

    Is antibacterial PNA the answer for combating multidrug resistant bacterial infections?

    Get PDF
    The emergence of multidrug resistant bacterial infections is a serious problem. Treatment options are limited to patients those are infected with multidrug resistant bacteria. We are in a desperate need of new antibiotics. Antisense oligomers of PNA (Peptide Nucleic Acid) were introduced in late 90’s as antibacterial agents in an intention to create a new class of bacterial specific antibiotic. Followed by several studies have demonstrated that antibacterial PNA oligomers are effective in a verity of pathogenic bacterial strains. Development of PNA-based drugs (PNA antibiotics) will help us to combat infections of drug resistant bacterial strains

    PNA Length Restriction of Antibacterial Activity of Peptide-PNA Conjugates in Escherichia coli Through Effects of the Inner Membrane

    Get PDF
    Peptide Nucleic Acid (PNA)-peptide conjugates targeting essential bacterial genes are showing promise as antisense antimicrobials in drug discovery. Optimization has focused on selection of target genes and exact localization around the ribosome binding site, but surprisingly a length optimum around 10–12 nucleobases has been found. Addressing this observation, we have investigated the relationship between PNA-length, PNA–RNA duplex stability and antimicrobial activity in E. coli in more detail. For PNAs of identical length of ten nucleobases the expected reverse correlation between the thermal stability (Tm) of the PNA–RNA duplex and the MIC for single mismatched PNAs was found. Also the expected direct correlation between the length of the PNA and the PNA–RNA duplex stability was found. Nonetheless, 10-mer PNAs [in a 6–18 mer extension series of (KFF)3K- and (RXR)4 conjugates] were the most active as antisense antimicrobials in both wild type E. coli MG1655 and AS19, suggesting that the size constraint is related to the bacterial uptake of PNA-peptide conjugates. This conclusion was supported by flow cytometry data showing higher bacterial uptake of shorter PNA fluorophore labeled conjugates. Interestingly, the size-limited uptake seems independent on outer membrane integrity (AS19), and thus the results suggest that the inner membrane limits the molecular size for peptide-PNA passage

    C21orf57 is a human homologue of bacterial YbeY proteins

    Get PDF
    The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.National Institutes of Health (U.S.) (Grant GM31010)National Institutes of Health (U.S.) (Grant GM17151

    Small RNA profiling of low biomass samples: identification and removal of contaminants

    Get PDF
    Background Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, yet contamination with RNA is usually considered to be very unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids, such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands careful evaluation. Results Herein, we report on the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, thereby arguing in particular for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origin in blood plasma. To avoid artefacts in future experiments, we also devise several protocols for the removal of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using ‘ultra-clean’ extraction kits. Conclusion This is the first report on the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies. Keywords: RNA sequencing; Artefact removal; Exogenous RNA in human blood plasma; Contaminant RNA; Spin column

    Peptide nucleic acid antisense oligomers open an avenue for developing novel antibacterial molecules

    No full text

    Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)(4)-Ahx-βala or the H-(R-Ahx)(6)-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections

    Elevated levels of Era GTPase improve growth, 16S rRNA processing, and 70S ribosome assembly of Escherichia coli lacking highly conserved multifunctional YbeY endoribonuclease

    No full text
    YbeY is a highly conserved, multifunctional endoribonuclease that plays a significant role in ribosome biogenesis and has several additional roles. Here we show that overexpression of the conserved GTPase Era in Escherichia coli partially suppresses the growth defect of a ΔybeY strain while improving 16S rRNA processing and 70S ribosome assembly. This suppression requires both the ability of Era to hydrolyze GTP and the function of three exoribonucleases, RNase II, RNase R, and RNase PH, suggesting a model for the action of Era. Overexpression of Vibrio cholerae Era similarly partially suppresses the defects of an E. coli ΔybeY strain, indicating that this property of Era is conserved in bacteria other than E. coli.National Institutes of Health (U.S.) (Grant GM31030)National Institutes of Health (U.S.) (Grant P30ES002109

    A Mutant Era GTPase Suppresses Phenotypes Caused by Loss of Highly Conserved YbeY Protein in Escherichia coli

    No full text
    Ribosome assembly is a complex fundamental cellular process that involves assembling multiple ribosomal proteins and several ribosomal RNA species in a highly coordinated yet flexible and resilient manner. The highly conserved YbeY protein is a single-strand specific endoribonuclease, important for ribosome assembly, 16S rRNA processing, and ribosome quality control. In Escherichia coli, ybeY deletion results in pleiotropic phenotypes including slow growth, temperature sensitivity, accumulation of precursors of 16S rRNA, and impaired formation of fully assembled 70S subunits. Era, an essential highly conserved GTPase protein, interacts with many ribosomal proteins, and its depletion results in ribosome assembly defects. YbeY has been shown to interact with Era together with ribosomal protein S11. In this study, we have analyzed a suppressor mutation, era(T99I), that can partially suppress a subset of the multiple phenotypes of ybeY deletion. The era(T99I) allele was able to improve 16S rRNA processing and ribosome assembly at 37°C. However, it failed to suppress the temperature sensitivity and did not improve 16S rRNA stability. The era(T99I) allele was also unable to improve the 16S rRNA processing defects caused by the loss of ribosome maturation factors. We also show that era(T99I) increases the GroEL levels in the 30S ribosome fractions independent of YbeY. We propose that the mechanism of suppression is that the changes in Era’s structure caused by the era(T99I) mutation affect its GTP/GDP cycle in a way that increases the half-life of RNA binding to Era, thereby facilitating alternative processing of the 16S RNA precursor. Taken together, this study offers insights into the role of Era and YbeY in ribosome assembly and 16S rRNA processing events.</jats:p
    corecore