64 research outputs found

    Spin currents and magnetoresistance of graphene-based magnetic junctions

    Full text link
    Using the tight-binding approximation and the nonequilibrium Green's function approach, we investigate the coherent spin-dependent transport in planar magnetic junctions consisting of two ferromagnetic (FM) electrodes separated by a graphene flake (GF) with zigzag or armchair interfaces. It is found that the electron conduction strongly depends on the geometry of contact between the GF and the FM electrodes. In the case of zigzag interfaces, the junction demonstrates a spin-valve effect with high magnetoresistance (MR) ratios and shows negative differential resistance features for a single spin channel at positive gate voltage. In the case of armchair interfaces, the current-voltage characteristics behave linearly at low bias voltages and hence, both spin channels are in on state with low MR ratios.Comment: 6 pages, 5 figure

    A computational study of the quantum transport properties of a Cu-CNT composite.

    Get PDF
    The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.The European Research Council provided financial support for this work under the Seventh Framework Program FP7/2007-2013 (ERC grant agreement no. 259061). Computational support from the Cambridge High Performance Computing Cluster is gratefully acknowledged.This is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5CP01470

    Atomic mechanisms of self-diffusion in amorphous silicon

    Full text link
    Based on recent calculations of the self-diffusion (SD) coefficient in amorphous silicon (a-Si) by classical Molecular Dynamics simulation [M. Posselt, H. Bracht, and D. Radi\'c, J. Appl. Phys. 131, 035102 (2022)] detailed investigations on atomic mechanisms are performed. For this purpose two Stillinger-Weber-type potentials are employed, one strongly overestimates the SD coefficient, while the other leads to values much closer to the experimental data. By taking into account the individual squared displacements (or diffusion lengths) of atoms the diffusional and vibrational contributions to the total mean squared displacement can be determined separately. It is shown that the diffusional part is not directly correlated with the concentration of coordination defects. The time-dependent distribution of squared displacements of atoms indicates that in a-Si a well-defined elemental diffusion length does not exist, in contrast to SD in the crystalline Si. The analysis of atoms with large squared displacements reveals that the mechanisms of SD in a-Si are characterized by complex rearrangements of bonds or exchange of neighbors. These are mono- and bi-directional exchanges of neighbors and neighbor replacements. Exchanges or replacements may concern up to three neighbors and may occur in relatively short periods of some ps. Bi- or mono-directional exchange or replacement of one neighbor atom happen more frequently than processes including more neighbors. A comparison of results for the two interatomic potentials shows that an increased three-body parameter only slows down the migration, but does not change the migration mechanisms fundamentally.Comment: 15 pages, 11 figure

    Strain-modulated defect engineering of two-dimensional materials

    Get PDF
    Strain- and defect-engineering are two powerful approaches to tailor the opto-electronic properties of two-dimensional (2D) materials, but the relationship between applied mechanical strain and behavior of defects in these systems remains elusive. Using first-principles calculations, we study the response to external strain of h-BN, graphene, MoSe2, and phosphorene, four archetypal 2D materials, which contain substitutional impurities. We find that the formation energy of the defect structures can either increase or decrease with bi-axial strain, tensile or compressive, depending on the atomic radius of the impurity atom, which can be larger or smaller than that of the host atom. Analysis of the strain maps indicates that this behavior is associated with the compressive or tensile local strains produced by the impurities that interfere with the external strain. We further show that the change in the defect formation energy is related to the change in elastic moduli of the 2D materials upon introduction of impurity, which can correspondingly increase or decrease. The discovered trends are consistent across all studied 2D materials and are likely to be general. Our findings open up opportunities for combined strain- and defect-engineering to tailor the opto-electronic properties of 2D materials, and specifically, the location and properties of single-photon emitters
    • …
    corecore