7 research outputs found

    Delineating associations of progressive pleuroparenchymal fibroelastosis in patients with pulmonary fibrosis

    Get PDF
    BACKGROUND: Computer quantification of baseline computed tomography (CT) radiological pleuroparenchymal fibroelastosis (PPFE) associates with mortality in idiopathic pulmonary fibrosis (IPF). We examined mortality associations of longitudinal change in computer-quantified PPFE-like lesions in IPF and fibrotic hypersensitivity pneumonitis (FHP). METHODS: Two CT scans 6-36 months apart were retrospectively examined in one IPF (n=414) and one FHP population (n=98). Annualised change in computerised upper-zone pleural surface area comprising radiological PPFE-like lesions (Δ-PPFE) was calculated. Δ-PPFE >1.25% defined progressive PPFE above scan noise. Mixed-effects models evaluated Δ-PPFE against change in visual CT interstitial lung disease (ILD) extent and annualised forced vital capacity (FVC) decline. Multivariable models were adjusted for age, sex, smoking history, baseline emphysema presence, antifibrotic use and diffusion capacity of the lung for carbon monoxide. Mortality analyses further adjusted for baseline presence of clinically important PPFE-like lesions and ILD change. RESULTS: Δ-PPFE associated weakly with ILD and FVC change. 22-26% of IPF and FHP cohorts demonstrated progressive PPFE-like lesions which independently associated with mortality in the IPF cohort (hazard ratio 1.25, 95% CI 1.16-1.34, p<0.0001) and the FHP cohort (hazard ratio 1.16, 95% CI 1.00-1.35, p=0.045). INTERPRETATION: Progression of PPFE-like lesions independently associates with mortality in IPF and FHP but does not associate strongly with measures of fibrosis progression

    Serial CT analysis in idiopathic pulmonary fibrosis: comparison of visual features that determine patient outcome

    No full text
    Altmann, Andre/0000-0002-9265-2393; Jones, Mark/0000-0001-6308-6014; Savas, Recep/0000-0002-7520-760XWOS: 000561755200008PubMed: 32345689Aims Patients with idiopathic pulmonary fibrosis (IPF) receiving antifibrotic medication and patients with non-IPF fibrosing lung disease often demonstrate rates of annualised forced vital capacity (FVC) decline within the range of measurement variation (5.0%-9.9%). We examined whether change in visual CT variables could help confirm whether marginal FVC declines represented genuine clinical deterioration rather than measurement noise. Methods in two IPF cohorts (cohort 1: n=103, cohort 2: n=108), separate pairs of radiologists scored paired volumetric CTs (acquired between 6 and 24 months from baseline). Change in interstitial lung disease, honeycombing, reticulation, ground-glass opacity extents and traction bronchiectasis severity was evaluated using a 5-point scale, with mortality prediction analysed using univariable and multivariable Cox regression analyses. Both IPF populations were then combined to determine whether change in CT variables could predict mortality in patients with marginal FVC declines. Results on univariate analysis, change in all CT variables except ground-glass opacity predicted mortality in both cohorts. on multivariate analysis adjusted for patient age, gender, antifibrotic use and baseline disease severity (diffusing capacity for carbon monoxide), change in traction bronchiectasis severity predicted mortality independent of FVC decline. Change in traction bronchiectasis severity demonstrated good interobserver agreement among both scorer pairs. Across all study patients with marginal FVC declines, change in traction bronchiectasis severity independently predicted mortality and identified more patients with deterioration than change in honeycombing extent. Conclusions Change in traction bronchiectasis severity is a measure of disease progression that could be used to help resolve the clinical importance of marginal FVC declines.Wellcome Trust Clinical Research Career Development FellowshipWellcome Trust [209553/Z/17/Z]; MRC eMedLab Medical Bioinformatics Career Development Fellowship; Medical Research CouncilMedical Research Council UK (MRC) [MR/L016311/1]; European Union's Horizon 2020 research and innovation program [666992]; National Institute for Health Research Biomedical Research Centre at the University of SouthamptonJJ was supported by a Wellcome Trust Clinical Research Career Development Fellowship (209553/Z/17/Z). AA holds an MRC eMedLab Medical Bioinformatics Career Development Fellowship. This work was supported by the Medical Research Council (grant number MR/L016311/1). This project has received funding from the European Union's Horizon 2020 research and innovation program (grant agreement number 666992). CJB and MGJ were supported by the National Institute for Health Research Biomedical Research Centre at the University of Southampton

    Serial CT analysis in idiopathic pulmonary fibrosis: comparison of visual features that determine patient outcome

    Get PDF
    Aims: Patients with idiopathic pulmonary fibrosis (IPF) receiving antifibrotic medication and patients with non-IPF fibrosing lung disease often demonstrate rates of annualised forced vital capacity (FVC) decline within the range of measurement variation (5.0%–9.9%). We examined whether change in visual CT variables could help confirm whether marginal FVC declines represented genuine clinical deterioration rather than measurement noise. Methods: In two IPF cohorts (cohort 1: n=103, cohort 2: n=108), separate pairs of radiologists scored paired volumetric CTs (acquired between 6 and 24 months from baseline). Change in interstitial lung disease, honeycombing, reticulation, ground-glass opacity extents and traction bronchiectasis severity was evaluated using a 5-point scale, with mortality prediction analysed using univariable and multivariable Cox regression analyses. Both IPF populations were then combined to determine whether change in CT variables could predict mortality in patients with marginal FVC declines. Results: On univariate analysis, change in all CT variables except ground-glass opacity predicted mortality in both cohorts. On multivariate analysis adjusted for patient age, gender, antifibrotic use and baseline disease severity (diffusing capacity for carbon monoxide), change in traction bronchiectasis severity predicted mortality independent of FVC decline. Change in traction bronchiectasis severity demonstrated good interobserver agreement among both scorer pairs. Across all study patients with marginal FVC declines, change in traction bronchiectasis severity independently predicted mortality and identified more patients with deterioration than change in honeycombing extent. Conclusions: Change in traction bronchiectasis severity is a measure of disease progression that could be used to help resolve the clinical importance of marginal FVC declines

    Delineating associations of progressive pleuroparenchymal fibroelastosis in patients with pulmonary fibrosis

    No full text
    Background Computer quantification of baseline computed tomography (CT) radiological pleuroparenchymal fibroelastosis (PPFE) associates with mortality in idiopathic pulmonary fibrosis (IPF). We examined mortality associations of longitudinal change in computer-quantified PPFE-like lesions in IPF and fibrotic hypersensitivity pneumonitis (FHP). Methods Two CT scans 6–36 months apart were retrospectively examined in one IPF (n=414) and one FHP population (n=98). Annualised change in computerised upper-zone pleural surface area comprising radiological PPFE-like lesions (Δ-PPFE) was calculated. Δ-PPFE >1.25% defined progressive PPFE above scan noise. Mixed-effects models evaluated Δ-PPFE against change in visual CT interstitial lung disease (ILD) extent and annualised forced vital capacity (FVC) decline. Multivariable models were adjusted for age, sex, smoking history, baseline emphysema presence, antifibrotic use and diffusion capacity of the lung for carbon monoxide. Mortality analyses further adjusted for baseline presence of clinically important PPFE-like lesions and ILD change. Results Δ-PPFE associated weakly with ILD and FVC change. 22–26% of IPF and FHP cohorts demonstrated progressive PPFE-like lesions which independently associated with mortality in the IPF cohort (hazard ratio 1.25, 95% CI 1.16–1.34, p<0.0001) and the FHP cohort (hazard ratio 1.16, 95% CI 1.00–1.35, p=0.045). Interpretation Progression of PPFE-like lesions independently associates with mortality in IPF and FHP but does not associate strongly with measures of fibrosis progression
    corecore