64 research outputs found
Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy
Immune checkpoint inhibitors (ICIs) have changed therapeutic algorithms in several malignancies, although intrinsic and secondary resistance is still an issue. In this context, the dysregulation of immuno-metabolism plays a leading role both in the tumor microenvironment (TME) and at the host level. In this review, we summarize the most important immune-metabolic factors and how they could be exploited therapeutically. At the cellular level, an increased concentration of extracellular adenosine as well as the depletion of tryptophan and uncontrolled activation of the PI3K/AKT pathway induces an immune-tolerant TME, reducing the response to ICIs. Moreover, aberrant angiogenesis induces a hypoxic environment by recruiting VEGF, Treg cells and immune-suppressive tumor associated macrophages (TAMs). On the other hand, factors such as gender and body mass index seem to affect the response to ICIs, while the microbiome composition (and its alterations) modulates both the response and the development of immune-related adverse events. Exploiting these complex mechanisms is the next goal in immunotherapy. The most successful strategy to date has been the combination of antiangiogenic drugs and ICIs, which prolonged the survival of patients with non-small-cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC), while results from tryptophan pathway inhibition studies are inconclusive. New exciting strategies include targeting the adenosine pathway, TAMs and the microbiota with fecal microbiome transplantation
Ovarian Cancer Immunotherapy: Turning up the Heat.
Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological malignancies. Despite surgery and chemotherapy, 5-years survival rates have improved only modestly over the past few decades remaining at 45% for advanced stages. Therefore, novel therapies are urgently needed. The presence of tumor-infiltrating lymphocytes (TILs) in OC tumor microenvironment (TME) has already proved to be correlated with overall survival (OS), while immune evasion mechanisms are associated with poor prognosis. Although these data indicate that immunotherapy has a strong rationale in OC, single agent immune-checkpoints inhibitors (ICIs) have shown only modest results in this malignancy. In this review, we will discuss immune-targeting combination therapies and adoptive cell therapy (ACT), highlighting the challenges represented by these strategies, which aim at disrupting the stroma-tumor barrier to boost immune system against ovarian cancer
Preclinical immunotherapy with Cytokine-Induced Killer lymphocytes against epithelial ovarian cancer
Preclinical immunotherapy with Cytokine-Induced Killer lymphocytes against epithelial ovarian cancer
Despite improvements in surgery and medical treatments, epithelial ovarian cancer (EOC) remains the most lethal gynaecological malignancy. Aim of this study is to investigate the preclinical immunotherapy activity of cytokine-induced killer lymphocytes (CIK) against epithelial ovarian cancers, focusing on platinum-resistant settings. We generated CIK ex vivo starting from human peripheral blood samples (PBMCs) collected from EOC patients. Their antitumor activity was tested in vitro and in vivo against platinum-resistant patient-derived ovarian cancer cells (pdOVCs) and a Patient Derived Xenograft (PDX), respectively. CIK were efficiently generated (48 fold median ex vivo expansion) from EOC patients; pdOVCs lines (n = 9) were successfully generated from metastatic ascites; the expression of CIK target molecules by pdOVC confirmed pre and post treatment in vitro with carboplatin. The results indicate that patient-derived CIK effectively killed autologous pdOVCs in vitro. Such intense activity was maintained against a subset of pdOVC that survived in vitro treatment with carboplatin. Moreover, CIK antitumor activity and tumor homing was confirmed in vivo within an EOC PDX model. Our preliminary data suggest that CIK are active in platinum resistant ovarian cancer models and should be therefore further investigated as a new therapeutic option in this extremely challenging setting
- …