266 research outputs found

    Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin

    Get PDF
    Ferritin proteins are taking center stage as smart nanocarriers for drug delivery due to their hollow cage-like structures and their unique 24-meric assembly. Among all ferritins, the chimeric Archaeoglobus ferritin (HumFt) is able assemble/disassemble varying the ionic strength of the medium while recognizing human TfR1 receptor overexpressed in cancer cells. In this paper we present a highly efficient, large scale purification protocol mainly based on crossflow ultrafiltration, starting from fermented bacterial paste. This procedure allows one to obtain about 2 g of purified protein starting from 100 g of fermented bacterial paste. The current procedure can easily remove contaminant proteins as well as DNA molecules in the absence of expensive and time consuming chromatographic steps

    Palladium-Catalyzed Cascade Approach to 12-(Aryl)indolo[1,2- c ]quin­azolin-6(5 H )-ones

    Get PDF
    A straightforward one-pot approach to the synthesis of challenging 12-arylindolo[1,2-c]quinazolin-6(5H)-ones is described. Starting from readily available o-(o-aminophenylethynyl)trifluoroacetanilides, palladium-catalyzed aminoarylation of the triple bond with ArI, ArBr, and ArN2 +BF4 – is followed by cyclization of the resulting N-trifluoro­acetyl-2-(o-aminophenyl)-3-aryl indole. This sequential reaction provides the title compounds by means of a rare elimination of trifluoromethane

    3D bioprinted human cortical neural constructs derived from induced pluripotent stem cells

    Get PDF
    Bioprinting techniques use bioinks made of biocompatible non-living materials and cells to build 3D constructs in a controlled manner and with micrometric resolution. 3D bioprinted structures representative of several human tissues have been recently produced using cells derived by differentiation of induced pluripotent stem cells (iPSCs). Human iPSCs can be differentiated in a wide range of neurons and glia, providing an ideal tool for modeling the human nervous system. Here we report a neural construct generated by 3D bioprinting of cortical neurons and glial precursors derived from human iPSCs. We show that the extrusion-based printing process does not impair cell viability in the short and long term. Bioprinted cells can be further differentiated within the construct and properly express neuronal and astrocytic markers. Functional analysis of 3D bioprinted cells highlights an early stage of maturation and the establishment of early network activity behaviors. This work lays the basis for generating more complex and faithful 3D models of the human nervous systems by bioprinting neural cells derived from iPSCs

    Pulmonary tuberculosis followed by sarcoidosis in an HIV-infected patient: a case report and a simplified diagnostic flowchart for diagnosis and treatment of sarcoidosis

    Get PDF
    The diagnosis of sarcoidosis in a patient living with HIV infection is an uncommon event and a challenge for clinicians. Clinical manifestations are variable and fluctuating depending to adherence to ARV therapy and to the level of CD4 count. We analyze here one chronic case in which sarcoidosis appeared clinically two years after pulmonary tuberculosis. The course of the disease was influenced and prolonged by frequent interruptions of antiretroviral therapy. Moreover the diagnosis and the decision to treat have been delayed by the need of exclusion of other pathologies, principally tuberculosis reactivation/reinfection, other mycobacterial diseases, hematologic malignancies. We propose a simplified flowchart for diagnosis and follow up of sarcoidosis, which may also be applied to patients with HIV infection. Diagnosis of latent tuberculosis infection (LTBI) may be difficult in these patients, because the immunological paradox of sarcoidosis. For this reason, following exclusion of active tuberculosis, we advise to submit all sarcoidosis patients to IPT (isoniazid preventive therapy), when immunosuppressive therapy is started

    Synergistic inhibition of the Hedgehog pathway by newly designed Smo and Gli antagonists bearing the isoflavone scaffold

    Get PDF
    Aberrant activation of the Hedgehog (Hh) pathway is responsible for the onset and progression of several malignancies. Small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector Gli1 have thus emerged recently as valuable anticancer agents. Here, we have designed, synthesized, and tested new Hh inhibitors taking advantage by the highly versatile and privileged isoflavone scaffold. The introduction of specific substitutions on the isoflavone's ring B allowed the identification of molecules targeting preferentially Smo or Gli1. Biological assays coupled with molecular modeling corroborated the design strategy, and provided new insights into the mechanism of action of these molecules. The combined administration of two different isoflavones behaving as Smo and Gli antagonists, respectively, in primary medulloblastoma (MB) cells highlighted the synergistic effects of these agents, thus paving the way to further and innovative strategies for the pharmacological inhibition of Hh signaling

    Inhibition of Hedgehog-dependent tumors and cancer stem cells by a newly identified naturally occurring chemotype

    Get PDF
    Hedgehog (Hh) inhibitors have emerged as valid tools in the treatment of a wide range of cancers. Indeed, aberrant activation of the Hh pathway occurring either by ligand-dependent or -independent mechanisms is a key driver in tumorigenesis. The smoothened (Smo) receptor is one of the main upstream transducers of the Hh signaling and is a validated target for the development of anticancer compounds, as underlined by the FDA-approved Smo antagonist Vismodegib (GDC-0449/Erivedge) for the treatment of basal cell carcinoma. However, Smo mutations that confer constitutive activity and drug resistance have emerged during treatment with Vismodegib. For this reason, the development of new effective Hh inhibitors represents a major challenge for cancer therapy. Natural products have always represented a unique source of lead structures in drug discovery, and in recent years have been used to modulate the Hh pathway at multiple levels. Here, starting from an in house library of natural compounds and their derivatives, we discovered novel chemotypes of Hh inhibitors by mean of virtual screening against the crystallographic structure of Smo. Hh functional based assay identified the chalcone derivative 12 as the most effective Hh inhibitor within the test set. The chalcone 12 binds the Smo receptor and promotes the displacement of Bodipy-Cyclopamine in both Smo WT and drug-resistant Smo mutant. Our molecule stands as a promising Smo antagonist able to specifically impair the growth of Hh-dependent tumor cells in vitro and in vivo and medulloblastoma stem-like cells and potentially overcome the associated drug resistance

    A Smo/Gli multitarget hedgehog pathway inhibitor impairs tumor growth

    Get PDF
    Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition

    Optonongenetic enhancement of activity in primary cortical neurons

    Get PDF
    It has been recently demonstrated that the exposure of naive neuronal cells to light—at the basis of optogenetic techniques and calcium imaging measurements—may alter neuronal firing. Indeed, understanding the effect of light on nongenetically modified neurons is crucial for a correct interpretation of calcium imaging and optogenetic experiments. Here we investigated the effect of continuous visible LED light exposure (490 nm, 0.18−1.3 mW/mm2) on spontaneous activity of primary neuronal networks derived from the early postnatal mouse cortex. We demonstrated, by calcium imaging and patch clamp experiments, that illumination higher than 1.0 mW/mm2 causes an enhancement of network activity in cortical cultures. We investigated the possible origin of the phenomena by blocking the transient receptor potential vanilloid 4 (TRPV4) channel, demonstrating a complex connection between this temperature-dependent channel and the measured effect. The results presented here shed light on an exogenous artifact, potentially present in all calcium imaging experiments, that should be taken into account in the analysis of fluorescence data

    Retinal fingerprints of ALS in patients: Ganglion cell apoptosis and TDP-43/p62 misplacement

    Get PDF
    Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neuron function. Although ophthalmic deficits are not considered a classic symptom of ALS, recent studies suggest that changes in retinal cells, similar to those in the spinal cord motor neurons, have been observed in postmortem human tissues and animal models. Methods: In this study, we examined by immunofluorescence analysis the retinal cell layers of sporadic ALS patients in post-mortem retinal slices. We evaluated the presence of cytoplasmic TDP-43 and SQSTM1/p62 aggregates, activation of the apoptotic pathway, and microglia and astrocytes reactivity. Results: We found in the retinal ganglion cell layer of ALS patients the increase of mislocalized TDP-43, SQSTM1/p62 aggregates, activation of cleaved caspase-3, and microglia density, suggesting that retinal changes can be used as an additional diagnostic tool for ALS. Discussion: The retina is considered part of the central nervous system, and neurodegenerative changes in the brain may be accompanied by structural and possibly functional changes in the neuroretina and ocular vasculature. Therefore, using in vivo retinal biomarkers as an additional diagnostic tool for ALS may provide an opportunity to longitudinally monitor individuals and therapies over time in a noninvasive and cost-effective manner

    A unique high-diversity natural product collection as a reservoir of new therapeutic leads

    Get PDF
    Plants represent a rich source of structurally diverse secondary metabolites, which can be exploited in the development of new clinically important compounds. Indeed, due to their biodiversity, medicinal plants represent the largest library of compounds that has ever existed. To date less than 1% of this vast biodiversity has been exploited in drug discovery, due to several factors, including the lack of an appropriate multidisciplinary perspective. Here we review the successful application of computer-aided methods in screening a unique and high-diversity in house collection library composed of around 1000 individual natural products, isolated mainly from indigenous plants collected in biodiversity-rich countries, especially of the tropics and subtropics, and enlarged with their semi-synthetic and synthetic derivatives, as well as plant material extracts, up to around 2000 components. During the last ten years, the in house library has provided several lead compounds that have been developed, and in some cases patented, as anticancer and antimicrobial agents. The main classes of the library are described, including (but not limited to) alkaloids, terpenoids, Diels–Alder-type adducts, isoflavones, chalcones, and cannabinoids. The main focus is on the chemical characteristics and biological activity of these identified compounds, with particular attention being given to those currently under patent or in the preclinical phase. We also assess the use of computer-aided methods in screening this unique and diverse in house collection of natural products that, over the last ten years, has provided some lead compounds that have been developed, and in some cases patented, as anticancer and antimicrobial agents. Finally, this review highlights the potential use of plant food extracts as a source of nutraceuticals and functional foods. The multidisciplinary approach described herein may further motivate research groups involved in natural product chemistry to potentially benefit from a limitless source of novel bioactive compounds
    • …
    corecore