16 research outputs found
Channels as taste receptors in vertebrates
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na+, H+) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na+, that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction
Electrophysiological heterogeneity in a functional subset of mouse taste cells during postnatal development
Taste cells in adult mammals are functionally heterogeneous as to the expression of ion channels. How these adult phenotypes are established during postnatal development, however, is not yet clear. We have addressed this issue by studying voltage-gated K+ and Cl- currents (I-K and I-Cl, respectively) in developing taste cells of the mouse vallate papilla. I-K and I-Cl underlie action potential waveform and firing properties, and play an important role in taste transduction. By using the patch clamp technique, we analyzed these currents in a specific group of cells, called Na/OUT cells and thought to be sensory. In adult mice, three different electrophysiological phenotypes of Na/OUT cells could be detected: cells with I-K (K cells); cells with both I-K and I-Cl (K+Cl cells); and cells with I-Cl (Cl cells). In contrast, at early developmental stages (2-4 postnatal days, PD) there were no Cl cells, which appeared at PD 8. Our findings indicate a mechanism that contributes to building-up the functional heterogeneity of mammalian taste cells during the postnatal development
Ion conductances in supporting cells isolated from the mouse vomeronasal organ
The vomeronasal organ (VNO) is a chemosensory structure involved in the detection of pheromones in most mammals. The VNO sensory epithelium contains both neurons and supporting cells. Data suggest that vomeronasal neurons represent the pheromonal transduction sites, whereas scarce information is available on the functional properties of supporting cells. To begin to understand their role in VNO physiology, we have characterized with patch-clamp recording techniques the electrophysiological properties of supporting cells isolated from the neuroepithelium of the mouse VNO. Supporting cells were distinguished from neurons by their typical morphology and by the lack of immunoreactivity for Ggamma8 and OMP, two specific markers for vomeronasal neurons. Unlike glial cells in other tissues, VNO supporting cells exhibited a depolarized resting potential (about -29 mV). A Goldman-Hodgkin-Katz analysis for resting ion permeabilities revealed indeed an unique ratio of P-K:P-Na:P-Cl = 1:0.23:1.4. Supporting cells also possessed voltage-dependent K+ and Na+ conductances that differed significantly in their biophysical and pharmacological properties from those expressed by VNO neurons. Thus glial membranes in the VNO can sustain significant fluxes of K+ and Na+, as well as Cl+. This functional property might allow supporting cells to mop-up and redistribute the excess of KCl and NaCl that often occurs in certain pheromone-delivering fluids, like urine, and that could blunt the sensitivity of VNO neurons to pheromones. Therefore vomeronasal supporting cells could affect chemosensory transduction in the VNO by regulating the ionic strength of the pheromone-containing medium
Apical and basal neurones isolated from the mouse vomeronasal organ differ for voltage-dependent currents
The mammalian vomeronasal organ (VNO) contains specialized neurones that transduce the chemical information related to pheromones into discharge of action potentials to the brain. Molecular and biochemical studies have shown that specific components of the pheromonal transduction systems are segregated into two distinct subsets of vomeronasal neurones: apical neurones and basal neurones. However, it is still unknown whether these neuronal subsets also differ in other functional characteristics, such as their membrane properties. We addressed this issue by studying the electrophysiological properties of vomeronasal neurones isolated from mouse VNO. We used the patch-clamp technique to examine both the passive membrane properties and the voltage-gated Na+, K+ and Ca2+ currents. Apical neurones were distinguished from basal ones by the length of their dendrites and by their distinct immunoreactivity for the putative pheromone receptor V2R2. The analysis of passive properties revealed that there were no significant differences between the two neuronal subsets. Also, apical neurones were similar to basal neurones in their biophysical and pharmacological properties of voltage-gated Na+ and K+ currents. However, we found that the density of Na+ currents was about 2-3 times greater in apical neurones than in basal neurones. Consistently, in situ hybridization analysis revealed a higher expression of the Na+ channel subtype III in apical neurones than in basal ones. In contrast, basal neurones were endowed with Ca2+ currents (T-type) of greater magnitude than apical neurones. Our findings indicate that apical and basal neurones in the VNO exhibit distinct electrical properties. This might have a profound effect on the sensory processes occurring in the VNO during pheromone detection
In vitro 1H and 31P NMR spectroscopy as a tool for investigating muscle energy state in facioscapulohumeral muscolar dystrophy (FSHD) mouse model
Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary neuromuscular disorder characterized by progressive weakness and atrophy of the facial, shoulder, abdominal and pelvic girdle muscles. We proposed that its pathogenesis could be associated with the over-expression of genes mapped at chromosome 4q35, ANT1, FRG1 and FRG2. Consistently, transgenic mice over-expressing FRG1 develop a progressive muscular dystrophy characterized by symptoms similar to those of human disease and thus it can be considered a reliable mice model to study FSHD. FSHD mouse model shows reduced tolerance to exercise and muscle weakness which can be related to disorders of muscle energy mechanisms.To investigate this hypothesis we have applied 1H and 31P NMR spectroscopy to wild-type and dystrophic vastus muscle PCA extracts to evaluate the muscle energy parameters by measuring the concentration of the major energy metabolites (ATP, ADP, AMP, Pi, Cr and PCr
Postnatal development of membrane excitability in taste cells of the mouse vallate papilla
The mammalian peripheral taste system undergoes functional changes during postnatal development. These changes could reflect age-dependent alterations in the membrane properties of taste cells, which use a vast array of ion channels for transduction mechanisms. Yet, scarce information is available on the membrane events in developing taste cells. We have addressed this issue by studying voltage-dependent Na+, K+, and Cl- currents (I-Na, I-K, and I-Cl, respectively) in a subset of taste cells (the so-called Na/OUT cells, which are electrically excitable and thought to be sensory) from mouse vallate papilla. Voltage-dependent currents play a key role during taste transduction, especially in the generation of action potentials. Patch-clamp recordings revealed that I-Na, I-K, and I-Cl were expressed early in postnatal development. However, only I-K and I-Cl densities increased significantly in developing Na/OUT cells. Consistent with the rise of I-K density, we found that action potential waveform changed markedly, with an increased speed of repolarization that was accompanied by an enhanced capability of repetitive firing. In addition to membrane excitability changes in putative sensory cells, we observed a concomitant increase in the occurrence of glia-like taste cells (the so called leaky cells) among patched cells. Leaky cells are likely involved in dissipating the increase of extracellular K+ during action potential discharge in chemosensory cells. Thus, developing taste cells of the mouse vallate papilla undergo a significant electrophysiological maturation and diversification. These functional changes may have a profound impact on the transduction capabilities of taste buds during development
Inhibition of voltage-gated potassium currents by gambierol in mouse taste cells
Ciguatera is a food poisoning caused by toxins of Gambierdiscus toxicus, a marine dinoflagellate. The neurological features of this intoxication include sensory abnormalities, such as paraesthesia, heightened nociperception, and also taste alterations. Here, we have evaluated the effect of gambierol, one of the possible ciguatera toxins, on the voltage-gated ion currents in taste cells. Taste cells are excitable cells endowed with voltage-gated Na+, K+, and Cl- currents (I-Na, I-K, and I-Cl, respectively). By applying the patch-clamp technique to single cells in isolated taste buds obtained from the mouse vallate papilla, we have recorded such currents and determined the effect of bath-applied gambierol. We found that this toxin markedly inhibited I-K in the nanomolar range (IC50 of 1.8 nM), whereas it showed no significant effect on I-Na or I-Cl even at high concentration (1 mu M). The block of I-K was irreversible even after a 50-min wash. In addition to affecting the current amplitude, we found that gambierol significantly altered both the activation and inactivation processes of I-K. In conclusion, unlike other toxins involved in ciguatera, such as ciguatoxins, which affect the functioning of voltage-gated sodium channels, the preferred molecular target of gambierol is the voltage-gated potassium channel, at least in taste cells. Voltage-gated potassium currents play an important role in the generation of the firing pattern during chemotransduction. Thus, gambierol may alter action potential discharge in taste cells and this could be associated with the taste alterations reported in the clinical literature