197 research outputs found

    On a Petrov-type D homogeneous solution

    Full text link
    We present a new two-parameter family of solutions of Einstein gravity with negative cosmological constant in 2+1 dimensions. These solutions are obtained by squashing the anti-de Sitter geometry along one direction and posses four Killing vectors. Global properties as well as the four dimensional generalization are discussed, followed by the investigation of the geodesic motion. A simple global embedding of these spaces as the intersection of four quadratic surfaces in a seven dimensional space is obtained. We argue also that these geometries describe the boundary of a four dimensional nutty-bubble solution and are relevant in the context of AdS/CFT correspondence.Comment: 20 pages, TeX fil

    Variations in the occurrence of SuperDARN F region echoes

    Get PDF
    The occurrence of F region ionospheric echoes observed by a number of SuperDARN HF radars is analyzed statistically in order to infer solar cycle, seasonal, and diurnal trends. The major focus is on Saskatoon radar data for 1994–2012. The distribution of the echo occurrence rate is presented in terms of month of observation and magnetic local time. Clear repetitive patterns are identified during periods of solar maximum and solar minimum. For years near solar maximum, echoes are most frequent near midnight during winter. For years near solar minimum, echoes occur more frequently near noon during winter, near dusk and dawn during equinoxes and near midnight during summer. Similar features are identified for the Hankasalmi and Prince George radars in the northern hemisphere and the Bruny Island TIGER radar in the southern hemisphere. Echo occurrence for the entire SuperDARN network demonstrates patterns similar to patterns in the echo occurrence for the Saskatoon radar and for other radars considered individually. In terms of the solar cycle, the occurrence rate of nightside echoes is shown to increase by a factor of at least 3 toward solar maximum while occurrence of the near-noon echoes does not significantly change with the exception of a clear depression during the declining phase of the solar cycle

    Born-Infeld Black Holes in (A)dS Spaces

    Full text link
    We study some exact solutions in a D(≄4)D(\ge4)-dimensional Einstein-Born-Infeld theory with a cosmological constant. These solutions are asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. Black hole horizon and cosmological horizon in these spacetimes can be a positive, zero or negative constant curvature hypersurface. We discuss the thermodynamics associated with black hole horizon and cosmological horizon. In particular we find that for the Born-Infeld black holes with Ricci flat or hyperbolic horizon in AdS space, they are always thermodynamically stable, and that for the case with a positive constant curvature, there is a critical value for the Born-Infeld parameter, above which the black hole is also always thermodynamically stable, and below which a unstable black hole phase appears. In addition, we show that although the Born-Infeld electrodynamics is non-linear, both black hole horizon entropy and cosmological horizon entropy can be expressed in terms of the Cardy-Verlinde formula. We also find a factorized solution in the Einstein-Born-Infeld theory, which is a direct product of two constant curvature spaces: one is a two-dimensional de Sitter or anti-de Sitter space, the other is a (D−2D-2)-dimensional positive, zero or negative constant curvature space.Comment: Latex, 18 pages with 4 eps figures, v2: Revtex, 11 pages with 4 eps figures, to appear in PR

    Eguchi-Hanson Solitons in Odd Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added feature of having Lorentzian signatures. They are asymptotic to (A)dSd+1/Zp_{d+1}/Z_p. In the AdS case their energy is negative relative to that of pure AdS. We present perturbative evidence in 5 dimensions that such metrics are the states of lowest energy in their asymptotic class, and present a conjecture that this is generally true for all such metrics. In the dS case these solutions have a cosmological horizon. We show that their mass at future infinity is less than that of pure dS.Comment: 26 pages, Late

    Colliding Kaluza-Klein Bubbles

    Get PDF
    We construct an exact solution describing the collision of two Kaluza-Klein "bubbles of nothing" in 3+1 dimensions. When the bubbles collide, a curvature singularity forms which is hidden inside an event horizon. However, unlike the formation of ordinary black holes, in this case the spacetime resembles the entire maximally extended Schwarzschild solution. We also point out that there are inequivalent bubbles that can be constructed from Kerr black holes.Comment: 20 pages, v2: minor error correcte

    Abelian Higgs Hair for a Static Charged Black String

    Get PDF
    We study the problem of vortex solutions in the background of an electrically charged black string. We show numerically that the Abelian Higgs field equations in the background of a four-dimensional black string have vortex solutions. These solutions which have axial symmetry, show that the black string can support the Abelian Higgs field as hair. This situation holds also in the case of the extremal black string. We also consider the self-gravity of the Abelian Higgs field and show that the effect of the vortex is to induce a deficit angle in the metric under consideration.Comment: REVTEX4, 12 pages, 6 figures, The version to be appeared in Phys. Rev.

    A Review of the N-bound and the Maximal Mass Conjectures Using NUT-Charged dS Spacetimes

    Full text link
    The proposed dS/CFT correspondence remains an intriguing paradigm in the context of string theory. Recently it has motivated two interesting conjectures: the entropic N-bound and the maximal mass conjecture. The former states that there is an upper bound to the entropy in asymptotically de Sitter spacetimes, given by the entropy of pure de Sitter space. The latter states that any asymptotically de Sitter spacetime cannot have a mass larger than the pure de Sitter case without inducing a cosmological singularity. Here we review the status of these conjectures and demonstrate their limitation. We first describe a generalization of gravitational thermodynamics to asymptotically de Sitter spacetimes, and show how to compute conserved quantities and gravitational entropy using this formalism. From this we proceed to a discussion of the N-bound and maximal mass conjectures. We then illustrate that these conjectures are not satisfied for certain asymptotically de Sitter spacetimes with NUT charge. We close with a presentation of explicit examples in various spacetime dimensionalities.Comment: 49 pages, 17 figures, a few typos corrected, addendum added with regard to some references that were later brought to our attentio

    Higher Dimensional Taub-NUTs and Taub-Bolts in Einstein-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Einstein-Maxwell equations in d-dimensions. These solutions are asymptotically locally flat, de-Sitter, or anti-de Sitter space-times. The solutions we obtained depend on two extra parameters other than the mass and the nut charge. These two parameters are the electric charge, q and the electric potential at infinity, V, which has a non-trivial contribution. We Analyze the conditions one can impose to obtain Taub-Nut or Taub-Bolt space-times, including the four-dimensional case. We found that in the nut case these conditions coincide with that coming from the regularity of the one-form potential at the horizon. Furthermore, the mass parameter for the higher dimensional solutions depends on the nut charge and the electric charge or the potential at infinity.Comment: 11 pages, LaTe

    Thick Domain Walls and Charged Dilaton Black Holes

    Get PDF
    We study a black hole domain wall system in dilaton gravity which is the low-energy limit of the superstring theory. We solve numerically equations of motion for real self-interacting scalar field and justify the existence of static axisymmetric field configuration representing the thick domain wall in the background of a charged dilaton black hole. It was also confirmed that the extreme dilaton black hole always expelled the domain wall.Comment: 10 pages, 8 figures; to be published in Phys. Rev. D1
    • 

    corecore