404 research outputs found
Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues
Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes
Native rodent species are unlikely sources of infection for Leishmania (Viannia) braziliensis along the Transoceanic Highway in Madre de Dios, Peru.
An estimated 2.3 million disability-adjusted life years are lost globally from leishmaniasis. In Peru's Amazon region, the department of Madre de Dios (MDD) rises above the rest of the country in terms of the annual incidence rates of human leishmaniasis. Leishmania (Viannia) braziliensis is the species most frequently responsible for the form of disease that results in tissue destruction of the nose and mouth. However, essentially nothing is known regarding the reservoirs of this vector-borne, zoonotic parasite in MDD. Wild rodents have been suspected, or proven, to be reservoirs of several Leishmania spp. in various ecosystems and countries. Additionally, people who live or work in forested terrain, especially those who are not regionally local and whose immune systems are thus naĂŻve to the parasite, are at most risk for contracting L. (V.) braziliensis. Hence, the objective of this study was to collect tissues from wild rodents captured at several study sites along the Amazonian segment of the newly constructed Transoceanic Highway and to use molecular laboratory techniques to analyze samples for the presence of Leishmania parasites. Liver tissues were tested via polymerase chain reaction from a total of 217 rodents; bone marrow and skin biopsies (ear and tail) were also tested from a subset of these same animals. The most numerous rodent species captured and tested were Oligoryzomys microtis (40.7%), Hylaeamys perenensis (15.7%), and Proechimys spp. (12%). All samples were negative for Leishmania, implying that although incidental infections may occur, these abundant rodent species are unlikely to serve as primary reservoirs of L. (V.) braziliensis along the Transoceanic Highway in MDD. Therefore, although these rodent species may persist and even thrive in moderately altered landscapes, we did not find any evidence to suggest they pose a risk for L. (V.) braziliensis transmission to human inhabitants in this highly prevalent region
3d collagen hydrogel promotes in vitro langerhans islets vascularization through ad-mvfs angiogenic activity
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 µm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF–islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation
Neural Crest-Derived Chondrocytes Isolation for Tissue Engineering in Regenerative Medicine
Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses
Microglial Activation and Priming in Alzheimer’s Disease: State of the Art and Future Perspectives
Alzheimer's Disease (AD) is the most common cause of dementia, having a remarkable social and healthcare burden worldwide. Amyloid beta (A beta) and protein Tau aggregates are disease hallmarks and key players in AD pathogenesis. However, it has been hypothesized that microglia can contribute to AD pathophysiology, as well. Microglia are CNS-resident immune cells belonging to the myeloid lineage of the innate arm of immunity. Under physiological conditions, microglia are in constant motion in order to carry on their housekeeping function, and they maintain an anti-inflammatory, quiescent state, with low expression of cytokines and no phagocytic activity. Upon various stimuli (debris, ATP, misfolded proteins, aggregates and pathogens), microglia acquire a phagocytic function and overexpress cytokine gene modules. This process is generally regarded as microglia activation and implies that the production of pro-inflammatory cytokines is counterbalanced by the synthesis and the release of anti-inflammatory molecules. This mechanism avoids excessive inflammatory response and inappropriate microglial activation, which causes tissue damage and brain homeostasis impairment. Once the pathogenic stimulus has been cleared, activated microglia return to the naive, anti-inflammatory state. Upon repeated stimuli (as in the case of A beta deposition in the early stage of AD), activated microglia shift toward a less protective, neurotoxic phenotype, known as "primed " microglia. The main characteristic of primed microglia is their lower capability to turn back toward the naive, anti-inflammatory state, which makes these cells prone to chronic activation and favours chronic inflammation in the brain. Primed microglia have impaired defence capacity against injury and detrimental effects on the brain microenvironment. Additionally, priming has been associated with AD onset and progression and can represent a promising target for AD treatment strategies. Many factors (genetics, environmental factors, baseline inflammatory status of microglia, ageing) generate an aberrantly activated phenotype that undergoes priming easier and earlier than normally activated microglia do. Novel, promising targets for therapeutic strategies for AD have been sought in the field of microglia activation and, importantly, among those factors influencing the baseline status of these cells. The CX3CL1 pathway could be a valuable target treatment approach in AD, although preliminary findings from the studies in this field are controversial. The current review aims to summarize state of the art on the role of microglia dysfunction in AD pathogenesis and proposes biochemical pathways with possible targets for AD treatment
Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration
- …