2 research outputs found

    Object-Guided Spatial Selection in Touch Without Concurrent Changes in the Perceived Location of the Hands

    Get PDF
    In an endogenous cueing paradigm with central visual cues, observers made speeded responses to tactile targets at the hands, which were either close together or far apart, and holding either two separate objects or one common object between them. When the hands were far apart, the response time costs associated with attending to the wrong hand were reduced when attention had to be shifted along one object jointly held by both hands compared to when it was shifted over the same distance but across separate objects. Similar reductions in attentional costs were observed when the hands were placed closer together, suggesting that processing at one hand is less prioritized over that at another when the hands can be “grouped” by virtue of arising from the same spatial location or from the same object. Probes of perceived hand locations throughout the task showed that holding a common object decreased attentional separability without decreasing the perceived separation between the hands. Our findings suggest that tactile events at the hands may be represented in a spatial framework that flexibly adapts to (object-guided) attentional demands, while their relative coordinates are simultaneously preserved. </jats:p

    Direct, Rapid Detection of Pathogens from Urine Samples

    No full text
    The problem of rapidly detecting pathogens directly from clinical samples poses significant analytical challenges. Addressing this issue in relation to urinary tract infections, we propose an effective protocol and related immunomagnetic test kits enabling versatile screening for the presence of pathogenic bacteria in unprocessed urine samples. To achieve this, the components of a typical immunomagnetic separation protocol were optimized towards the sensitive assessment of the aggregates formed out of immunomagnetically tagged target pathogens collected from clinical samples. Specifically, a dedicated immunomagnetic material was developed via the functionalization of standardized, micron-sized magnetic beads with generic antibodies against gram-specific bacterial constituents with mannan binding lectin. As such, we demonstrate efficient procedures for achieving the enhanced, specific, and pathogen-mediated cluster formation of these tailored affinity-coated magnetic beads in complex samples. We further show how cluster analysis, in conjunction with the use of nonspecific, inexpensive fluorescent dye, allows for a straightforward optical assessment of the bacterial load directly from urine samples. The optimized sensing protocol and related kits provide, in less than 60 min, qualitative (positive/negative) information on the bacterial load with 85% specificity and 96% sensitivity, which is appropriate to empower clinical microscopy with a new analytic dimension. The procedure is prone to automation, can be conveniently used in clinical microbiology laboratories and, since it preserves the viability of the captured bacteria, can be interfaced with downstream analyses and antimicrobial susceptibility testing. Moreover, the study emphasizes a suite of practical validation assays that are useful for bringing the tool-box of immunomagnetic materials outside the academic laboratory and into real-life applications
    corecore