2 research outputs found

    Exalted dual-scale surface roughening in laser ablated aluminum capped with a transparent thin film: Wetting and anti-icing behavior

    Get PDF
    Near infrared laser ablation of metals, specifically aluminum, has been systematically applied to generate surface roughness. Very high laser fluences may even lead to a so called “explosive” ablation regime where roughness becomes dramatically enhanced. In the present work we have developed an alternative methodology that, utilizing milder laser irradiation conditions (i.e. laser fluences from 0.37 to 0.72 J/cm²), renders aluminum surfaces with a dual-scale roughness character and Sp parameter values twice or even trice the value found in reference samples. This has been possible for aluminum substrates coated with a highly transparent aluminum oxynitride capping layer. The resulting surfaces, consisting of very rough partially oxidized aluminum with negligible amounts of nitrogen species, resulted highly hydrophobic and depicted long icing delay times as required for anti-icing applications. A correlation has been found between the wetting and anti-icing behaviors, the use of a capping layer and the laser irradiation conditions. To account for this exalted roughening phenomenon, we propose that the transparent capping layer confines the laser energy within the aluminum shallow zones, delays the formation of the plasma plume and produces an enhancement in the aluminum ablation, even at relatively low laser fluences.University of Seville through the VI PPIT-USMCIN/AEI/10.13039/50110001103

    Characterizing the physicochemical and mechanical properties of ZrN thin films deposited on Zr substrates by pulsed laser technique

    No full text
    Due to their outstanding physical and mechanical features, ZrN thin films are increasingly used as coatings to protect materials intended for nuclear applications such as Zirconium. To our knowledge, there is no report of pulsed laser deposition (PLD) of ZrN thin films on a Zr substrate. In this work, we have successfully prepared ZrN thin films on Zr substrates using the PLD technique with a KrF excimer laser, in a N2 environment at 2 Pa pressure and a fixed substrate temperature of 500 °C. The deposited 200 nm ZrN thin films exhibited a homogeneous surface and showed a face-centered cubic polycrystalline structure. The surface roughness was 3.69 nm. X-ray diffraction, Raman and X-ray photoelectron spectroscopy measurements confirmed the presence of ZrN. The coated sample's mean value of hardness (11.6 GP) doubled that of the uncoated sample
    corecore