2,239 research outputs found
Cooperative Wideband Spectrum Sensing Based on Joint Sparsity
COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY
By Ghazaleh Jowkar, Master of Science
A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University
Virginia Commonwealth University 2017
Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering
In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically
Road Friction Estimation for Connected Vehicles using Supervised Machine Learning
In this paper, the problem of road friction prediction from a fleet of
connected vehicles is investigated. A framework is proposed to predict the road
friction level using both historical friction data from the connected cars and
data from weather stations, and comparative results from different methods are
presented. The problem is formulated as a classification task where the
available data is used to train three machine learning models including
logistic regression, support vector machine, and neural networks to predict the
friction class (slippery or non-slippery) in the future for specific road
segments. In addition to the friction values, which are measured by moving
vehicles, additional parameters such as humidity, temperature, and rainfall are
used to obtain a set of descriptive feature vectors as input to the
classification methods. The proposed prediction models are evaluated for
different prediction horizons (0 to 120 minutes in the future) where the
evaluation shows that the neural networks method leads to more stable results
in different conditions.Comment: Published at IV 201
- …